In [13]:
import argparse
import os
import shutil
import time
import math
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data as data_utils
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import cv2

Model Defination


In [30]:
"""
ResNet defination: https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

"""


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

class G_model(nn.Module):

    def __init__(self, block, layers, num_common_blocks=4, num_albedo_blocks=4, num_shading_blocks=4, num_classes=1000):
        """
            resnet18 begin
        """ 
        self.inplanes = 64
        super(G_model, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
#         self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
#         self.avgpool = nn.AvgPool2d(7)
#         self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
        """
            resnet18 end
        """
        
#         self.myfc = nn.Linear(num_classes, 2)
        """
            input data
        """
            
        """
            conv or upsample to 8M:
            from maxpool output(8M) and layer3 output(M)
        """
        self.num_common_channels = 64
        self.upsample1 = nn.Conv2d(64, self.num_common_channels, kernel_size=5, padding=2, bias=False)
        self.upsample1_bn = nn.BatchNorm2d(self.num_common_channels)
        self.upsample1_relu = nn.ReLU(inplace=True)
        
        self.upsample2 = nn.ConvTranspose2d(256, 256, kernel_size=3, padding=1, bias=False)
        self.upsample2_conv = nn.Conv2d(256, self.num_common_channels, kernel_size=5, padding=2, bias=False)
        self.upsample2_bn = nn.BatchNorm2d(self.num_common_channels)
        self.upsample2_relu = nn.ReLU(inplace=True)
        
        """
            intrinsic net: common part
        """
        self.common_layer = self._make_layer(block, self.num_common_channels, num_common_blocks)
        
        """
            albedo part
        """
        self.albedo_layer = self._make_layer(block, self.num_common_channels, num_albedo_blocks)
        self.albedo_output = nn.ConvTranspose2d(self.num_common_channels, 3, kernel_size=8, padding=4, bias=True)
        
        """
            shading part
        """
        self.shading_layer = self._make_layer(block, self.num_common_channels, num_shading_blocks)
        self.shading_output = nn.ConvTranspose2d(self.num_common_channels, 3, kernel_size=8, padding=4, bias=True)
        

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        """
            resnet18 begin
        """
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

#         x = self.avgpool(x)
#         x = x.view(x.size(0), -1)
#         x = self.fc(x)
#         x = self.myfc(x)

        """
            resnet18 end
        """

        """
            finetune part
                albedo
                shading
        """
        x = self.common_layer(x)
        albedo = self.albedo_layer(x)
        shading = self.shading_layer(x)
        albedo = self.albedo_output(albedo)
        shading = self.shading_output(shading)
        
        return albedo, shading
    
    
class D_model(nn.Module):
    def __init__(self):
        self.conv1 = nn.Conv2d(64, self.num_common_channels, kernel_size=5, padding=2, bias=False)
        self.relu1 = nn.ReLU(inplace=True)
        self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        self.conv2 = nn.Conv2d(128, self.num_common_channels, kernel_size=5, padding=2, bias=False)
        self.relu2 = nn.ReLU(inplace=True)
        self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        self.conv3 = nn.Conv2d(256, self.num_common_channels, kernel_size=5, padding=2, bias=False)
        self.relu3 = nn.ReLU(inplace=True)
        self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        self.conv4 = nn.Conv2d(256, self.num_common_channels, kernel_size=5, padding=2, bias=False)
        self.relu4 = nn.ReLU(inplace=True)
        self.pool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        self.conv5 = nn.Conv2d(512, self.num_common_channels, kernel_size=5, padding=2, bias=False)
        self.relu5 = nn.ReLU(inplace=True)
        self.pool5 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        self.fc = nn.Linear(256//32, 1)
    def forward(self, x):
        x = self.conv1(x)
        x = self.relu1(x)
        x = self.pool1(x)
        
        x = self.conv2(x)
        x = self.relu2(x)
        x = self.pool2(x)
    
        x = self.conv3(x)
        x = self.relu3(x)
        x = self.pool3(x)
        
        x = self.conv4(x)
        x = self.relu4(x)
        x = self.pool4(x)
    
        x = self.conv5(x)
        x = self.relu5(x)
        x = self.pool5(x)
        
        x = self.fc(x)
        
        return x
    


pretrained_dict = torch.load('/Users/albertxavier/.torch/models/resnet18-5c106cde.pth')

G = G_model(BasicBlock, [2, 2, 2, 2])
G_dict = G.state_dict()

# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in G_dict}
# 2. overwrite entries in the existing state dict
G_dict.update(pretrained_dict) 
# 3. load the new state dict
G.load_state_dict(pretrained_dict)

D = D_model()


---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-30-c2392e5eed4c> in <module>()
    223 G_dict.update(pretrained_dict)
    224 # 3. load the new state dict
--> 225 G.load_state_dict(pretrained_dict)
    226 
    227 D = D_model()

/Users/albertxavier/anaconda/lib/python2.7/site-packages/torch/nn/modules/module.pyc in load_state_dict(self, state_dict)
    317         missing = set(own_state.keys()) - set(state_dict.keys())
    318         if len(missing) > 0:
--> 319             raise KeyError('missing keys in state_dict: "{}"'.format(missing))
    320 
    321     def parameters(self, memo=None):

KeyError: 'missing keys in state_dict: "set([\'upsample1_bn.running_var\', \'shading_layer.1.bn2.running_mean\', \'common_layer.0.downsample.0.weight\', \'common_layer.0.bn1.running_var\', \'shading_layer.1.bn1.running_mean\', \'common_layer.1.bn1.running_var\', \'common_layer.3.bn2.bias\', \'upsample1_bn.weight\', \'shading_layer.0.conv1.weight\', \'common_layer.1.bn2.running_var\', \'albedo_layer.2.bn2.running_mean\', \'shading_layer.1.bn1.running_var\', \'common_layer.3.bn1.running_var\', \'common_layer.0.downsample.1.running_var\', \'common_layer.0.conv2.weight\', \'albedo_layer.1.bn2.weight\', \'common_layer.3.conv1.weight\', \'shading_layer.2.bn2.bias\', \'shading_layer.2.bn1.running_mean\', \'common_layer.0.bn2.bias\', \'albedo_layer.2.bn2.weight\', \'albedo_layer.2.conv2.weight\', \'common_layer.3.conv2.weight\', \'albedo_layer.3.bn1.running_mean\', \'shading_layer.2.bn1.running_var\', \'shading_layer.2.bn2.running_var\', \'common_layer.1.bn2.running_mean\', \'albedo_layer.2.bn1.bias\', \'common_layer.2.bn1.weight\', \'albedo_layer.0.bn2.weight\', \'upsample1.weight\', \'common_layer.0.bn1.weight\', \'common_layer.0.downsample.1.running_mean\', \'shading_layer.2.conv1.weight\', \'albedo_layer.1.bn2.bias\', \'shading_layer.2.bn1.weight\', \'common_layer.0.downsample.1.weight\', \'common_layer.2.conv1.weight\', \'common_layer.2.bn2.weight\', \'shading_layer.3.conv1.weight\', \'common_layer.1.bn1.bias\', \'albedo_layer.1.bn1.weight\', \'albedo_layer.3.bn1.bias\', \'common_layer.0.bn2.running_var\', \'common_layer.1.conv2.weight\', \'albedo_output.weight\', \'shading_layer.3.bn2.weight\', \'upsample2_bn.bias\', \'albedo_layer.1.bn1.bias\', \'albedo_layer.2.bn1.running_var\', \'common_layer.1.bn1.weight\', \'shading_layer.0.bn1.running_mean\', \'common_layer.0.bn1.running_mean\', \'common_layer.3.bn1.bias\', \'shading_layer.2.bn2.weight\', \'common_layer.2.bn2.running_mean\', \'shading_layer.3.bn1.bias\', \'albedo_layer.1.bn1.running_mean\', \'common_layer.0.bn2.running_mean\', \'shading_layer.1.conv2.weight\', \'albedo_layer.1.bn2.running_mean\', \'common_layer.0.bn2.weight\', \'albedo_layer.0.conv1.weight\', \'common_layer.3.bn2.weight\', \'albedo_layer.0.bn2.running_var\', \'albedo_layer.0.bn1.running_var\', \'shading_layer.1.bn1.bias\', \'common_layer.0.downsample.1.bias\', \'common_layer.2.bn1.running_mean\', \'albedo_layer.0.bn2.running_mean\', \'shading_layer.3.conv2.weight\', \'shading_layer.1.bn2.running_var\', \'albedo_layer.3.conv1.weight\', \'shading_layer.3.bn1.running_mean\', \'upsample2_bn.running_mean\', \'common_layer.2.bn2.running_var\', \'common_layer.1.conv1.weight\', \'common_layer.2.bn1.running_var\', \'albedo_layer.0.bn1.weight\', \'common_layer.1.bn1.running_mean\', \'shading_layer.3.bn2.running_mean\', \'albedo_layer.3.bn2.running_var\', \'albedo_layer.2.bn2.running_var\', \'shading_layer.3.bn1.weight\', \'shading_layer.0.bn2.running_mean\', \'shading_layer.1.bn2.bias\', \'shading_layer.2.bn2.running_mean\', \'common_layer.2.conv2.weight\', \'shading_layer.0.bn1.bias\', \'upsample1_bn.bias\', \'albedo_layer.2.conv1.weight\', \'albedo_layer.0.bn2.bias\', \'upsample2_conv.weight\', \'shading_layer.0.bn2.weight\', \'albedo_layer.0.bn1.running_mean\', \'common_layer.3.bn1.running_mean\', \'albedo_layer.3.bn2.weight\', \'common_layer.3.bn1.weight\', \'albedo_layer.3.conv2.weight\', \'common_layer.2.bn2.bias\', \'albedo_layer.2.bn2.bias\', \'albedo_output.bias\', \'common_layer.3.bn2.running_var\', \'shading_layer.2.bn1.bias\', \'common_layer.1.bn2.weight\', \'common_layer.0.bn1.bias\', \'shading_layer.1.bn1.weight\', \'upsample2_bn.weight\', \'albedo_layer.0.conv2.weight\', \'common_layer.2.bn1.bias\', \'shading_output.weight\', \'upsample2.weight\', \'albedo_layer.1.bn1.running_var\', \'albedo_layer.0.bn1.bias\', \'albedo_layer.3.bn1.weight\', \'albedo_layer.1.bn2.running_var\', \'shading_layer.0.conv2.weight\', \'common_layer.1.bn2.bias\', \'albedo_layer.2.bn1.running_mean\', \'albedo_layer.1.conv1.weight\', \'common_layer.3.bn2.running_mean\', \'albedo_layer.3.bn1.running_var\', \'upsample1_bn.running_mean\', \'shading_layer.0.bn1.running_var\', \'albedo_layer.1.conv2.weight\', \'albedo_layer.3.bn2.running_mean\', \'shading_layer.0.bn1.weight\', \'shading_layer.0.bn2.running_var\', \'shading_layer.1.conv1.weight\', \'shading_layer.2.conv2.weight\', \'shading_layer.3.bn2.bias\', \'shading_output.bias\', \'shading_layer.3.bn2.running_var\', \'albedo_layer.2.bn1.weight\', \'albedo_layer.3.bn2.bias\', \'upsample2_bn.running_var\', \'shading_layer.3.bn1.running_var\', \'shading_layer.1.bn2.weight\', \'common_layer.0.conv1.weight\', \'shading_layer.0.bn2.bias\'])"'

Load Pretrained Model


In [16]:
# pretrained_resnet18 = torch.load('/Users/albertxavier/.torch/models/resnet18-5c106cde.pth')
# # print pretrained_resnet18
# pretrained_dict =  pretrained_resnet18.state_dict()

# G = G_model(BasicBlock, [2, 2, 2, 2])
# G_dict = G.state_dict()

# # 1. filter out unnecessary keys
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in G_dict}
# # 2. overwrite entries in the existing state dict
# G_dict.update(pretrained_dict) 
# # 3. load the new state dict
# G_dict.load_state_dict(G_dict)

# D = D_model()


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-16-f9e13d01004a> in <module>()
     28 # G_dict.load_state_dict(pretrained_dict)
     29 
---> 30 D = D_model()
     31 

NameError: name 'D_model' is not defined

Define Solver


In [ ]:
lr = 0.01
criterion = nn.MSELoss();
G_solver = optim.Adam(G.parameters(), lr=lr)
D_solver = optim.Adam(D.parameters(), lr=lr)

In [138]:
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import os
import glob

%matplotlib inline

def default_loader(path):
    return Image.open(path).convert('RGB')

def make_dataset(dir):
    images_paths = glob.glob(os.path.join(dir, 'clean', '*', '*.png'))
    albedo_paths = images_paths[:]
    shading_paths = images_paths[:]
    pathes = []
    for img_path in images_paths:
        sp = img_path.split('/'); sp[-3] = 'albedo'; sp = ['/'] + sp; albedo_path = os.path.join(*sp)
        sp = img_path.split('/'); sp[-3] = 'albedo'; sp = ['/'] + sp; shading_path = os.path.join(*sp)
        pathes.append((img_path, albedo_path, shading_path))
    return pathes


class MyImageFolder(data_utils.Dataset):
    def __init__(self, root, transform=None, target_transform=None,
                loader=default_loader):
        print "dsdas"
        imgs = make_dataset(root)
        if len(imgs) == 0:
            raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
                               "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))

        self.root = root
        self.imgs = imgs
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader
        
    def __getitem__(self, index):
        img_path, albedo_path, shading_path = self.imgs[index]
        
        img = self.loader(img_path)
        albedo = self.loader(albedo_path)
        shading = self.loader(shading_path)

        if self.transform is not None: img = self.transform(img)
        if self.transform is not None: albedo = self.transform(albedo)
        if self.transform is not None: shading = self.transform(shading)
#         if self.target_transform is not None:
#             target = self.target_transform(target)

        return img, albedo, shading
    
    def __len__(self):
        return len(self.imgs)

    
dataset= MyImageFolder('/Volumes/xavier/dataset/sintel/images/', 
                       transforms.Compose(
        [transforms.ToTensor()]
    ))
# print dataset.imgs[3]
# print dataset.imgs[4]
# print dataset.imgs[5]

dataloader=  data_utils.DataLoader(dataset,1,True,num_workers=1)
# print dataloader

# for i,(img,albedo,shading) in enumerate(dataloader):
#     print '>>> i = ', i
# #     print img
#     img = img.numpy(); img = np.array(img[0,:,:,:]); img = img.transpose(1,2,0); plt.imshow(img);
#     plt.figure(); albedo = albedo.numpy(); albedo = np.array(albedo[0,:,:,:]); albedo = albedo.transpose(1,2,0); plt.imshow(albedo);
#     plt.figure(); shading = shading.numpy(); shading = np.array(shading[0,:,:,:]); shading = shading.transpose(1,2,0); plt.imshow(shading);
#     break


dsdas
<torch.utils.data.dataloader.DataLoader object at 0x10b633250>
>>> i =  0

In [ ]:
def train_discriminator(discriminator, predict, groundtruth):
    discriminator.zero_grad()
    outputs = D(groundtruth)
    real_loss = criterion(outputs, groundtruth)
    real_score = outputs
    
    outputs = discriminator(predict) 
    fake_loss = criterion(outputs, predict)
    fake_score = outputs

    d_loss = real_loss + fake_loss
    d_loss.backward()
    d_optimizer.step()
    return d_loss, real_score, fake_score

In [ ]:
def train_generator(generator, discriminator_outputs, groundtruth):
    generator.zero_grad()
    g_loss = criterion(discriminator_outputs, groundtruth)
    g_loss.backward()
    g_optimizer.step()
    return g_loss

In [ ]:
"""
    Train
"""
epoches = 10
train_loader = dataloader
for epoch in range(num_epochs):
    for n, (img,ground_truth_albedo,ground_truth_shading) in enumerate(train_loader):
        img = Variable(img)
        real_label_albedo = Variable(ground_truth_albedo)
        predict_albedo, predict_shading = G(img)
        
        d_loss, real_score, fake_score = train_discriminator(D, predict_albedo, ground_truth_albedo)
        
        fake_image = G(img)
        output = discriminator(fake_image)
        
        g_loss = train_generator(G, output, ground_truth_albedo)
        
        if (n+1) % 100 == 0:
            test_albedo, _ = G(img)
            cv2.imwrite("test.png", test_albedo)

In [ ]:

Test Cells Below

Custom Dataset Class


In [3]:
pretrained_resnet18 = models.resnet18(pretrained=True)
# print model.parameters
# print pretrained_resnet18
print pretrained_resnet18.state_dict()


OrderedDict([('conv1.weight', 
(0 ,0 ,.,.) = 
 -1.0419e-02 -6.1356e-03 -1.8098e-03  ...   5.6615e-02  1.7083e-02 -1.2694e-02
  1.1083e-02  9.5276e-03 -1.0993e-01  ...  -2.7124e-01 -1.2907e-01  3.7424e-03
 -6.9434e-03  5.9089e-02  2.9548e-01  ...   5.1972e-01  2.5632e-01  6.3573e-02
                 ...                   ⋱                   ...                
 -2.7535e-02  1.6045e-02  7.2595e-02  ...  -3.3285e-01 -4.2058e-01 -2.5781e-01
  3.0613e-02  4.0960e-02  6.2850e-02  ...   4.1384e-01  3.9359e-01  1.6606e-01
 -1.3736e-02 -3.6746e-03 -2.4084e-02  ...  -1.5070e-01 -8.2230e-02 -5.7828e-03

(0 ,1 ,.,.) = 
 -1.1397e-02 -2.6619e-02 -3.4641e-02  ...   3.2521e-02  6.6221e-04 -2.5743e-02
  4.5687e-02  3.3603e-02 -1.0453e-01  ...  -3.1253e-01 -1.6051e-01 -1.2826e-03
 -8.3730e-04  9.8420e-02  4.0210e-01  ...   7.0789e-01  3.6887e-01  1.2455e-01
                 ...                   ⋱                   ...                
 -5.5926e-02 -5.2239e-03  2.7081e-02  ...  -4.6178e-01 -5.7080e-01 -3.6552e-01
  3.2860e-02  5.5574e-02  9.9670e-02  ...   5.4636e-01  4.8276e-01  1.9867e-01
  5.3051e-03  6.6938e-03 -1.7254e-02  ...  -1.4822e-01 -7.7248e-02  7.2183e-04

(0 ,2 ,.,.) = 
 -2.0315e-03 -9.1617e-03  2.1209e-02  ...   8.9177e-02  3.3655e-02 -2.0102e-02
  1.5398e-02 -1.8648e-02 -1.2591e-01  ...  -2.5342e-01 -1.2980e-01 -2.7975e-02
  9.8454e-03  4.9047e-02  2.1699e-01  ...   3.4872e-01  1.0433e-01  1.8413e-02
                 ...                   ⋱                   ...                
 -2.8356e-02  1.8404e-02  9.8647e-02  ...  -1.1740e-01 -2.5760e-01 -1.5451e-01
  2.0766e-02 -2.6286e-03 -3.7825e-02  ...   2.4141e-01  2.4345e-01  1.1796e-01
  7.4684e-04  7.7677e-04 -1.0050e-02  ...  -1.4865e-01 -1.1754e-01 -3.8350e-02
     ⋮ 

(1 ,0 ,.,.) = 
 -4.4154e-03 -4.0645e-03  3.1589e-03  ...  -3.7026e-02 -2.5158e-02 -4.7945e-02
  5.1310e-02  5.3402e-02  8.0436e-02  ...   1.4480e-01  1.4287e-01  1.2312e-01
 -7.3337e-03  2.1755e-03  3.7580e-02  ...   6.1517e-02  8.0324e-02  1.1715e-01
                 ...                   ⋱                   ...                
 -2.6754e-02 -1.2297e-01 -1.3653e-01  ...  -1.4068e-01 -1.1155e-01 -4.9556e-02
  2.3524e-02 -1.7288e-02 -1.1122e-02  ...  -1.8826e-02 -2.3320e-02 -2.9474e-02
  2.8689e-02  2.1659e-02  4.7888e-02  ...   2.5498e-02  3.5346e-02  1.1280e-02

(1 ,1 ,.,.) = 
  4.6919e-04  1.2153e-02  4.2035e-02  ...   4.6403e-02  4.0423e-02 -1.4439e-02
  4.3463e-02  6.8779e-02  1.3268e-01  ...   2.8606e-01  2.6905e-01  2.0935e-01
 -5.7621e-02 -2.2642e-02  3.0547e-02  ...   1.3763e-01  1.6538e-01  1.7946e-01
                 ...                   ⋱                   ...                
 -1.0816e-01 -2.5227e-01 -2.9742e-01  ...  -2.8503e-01 -2.1493e-01 -1.0320e-01
  4.0709e-02 -3.2771e-02 -6.3450e-02  ...  -9.2360e-02 -6.9876e-02 -4.9841e-02
  8.2942e-02  8.7580e-02  1.0111e-01  ...   5.2714e-02  6.0968e-02  4.1198e-02

(1 ,2 ,.,.) = 
 -1.6391e-02 -1.3870e-02  5.2810e-03  ...   4.3698e-02  2.2707e-02 -4.5983e-02
  3.3202e-02  4.2014e-02  9.3500e-02  ...   2.6162e-01  2.2970e-01  1.6694e-01
 -4.5987e-02 -1.6365e-02  2.6811e-02  ...   1.4951e-01  1.3216e-01  1.3579e-01
                 ...                   ⋱                   ...                
 -7.2129e-02 -1.8902e-01 -2.3389e-01  ...  -1.9038e-01 -1.5609e-01 -7.5974e-02
  5.1161e-02 -2.5815e-02 -6.9357e-02  ...  -5.8999e-02 -6.1550e-02 -4.4555e-02
  1.1174e-01  7.8979e-02  6.5849e-02  ...   3.1617e-02  2.5221e-02  7.4257e-03
     ⋮ 

(2 ,0 ,.,.) = 
 -7.0826e-08 -6.4306e-08 -7.3806e-08  ...  -9.8000e-08 -1.0905e-07 -8.3421e-08
 -6.1125e-09  2.0613e-09 -8.0922e-09  ...  -4.9840e-08 -4.3836e-08 -3.0538e-09
  7.1953e-08  7.5616e-08  5.9282e-08  ...  -9.7509e-09 -1.0951e-09  4.2442e-08
                 ...                   ⋱                   ...                
  9.5889e-08  1.0039e-07  7.9817e-08  ...  -1.7491e-08 -4.7666e-08 -1.3265e-08
  1.2904e-07  1.4762e-07  1.7477e-07  ...   1.3233e-07  1.0628e-07  9.3316e-08
  1.2558e-07  1.3644e-07  1.8431e-07  ...   2.1399e-07  1.7710e-07  1.7166e-07

(2 ,1 ,.,.) = 
 -1.2690e-07 -9.6139e-08 -1.0372e-07  ...  -1.1808e-07 -1.3309e-07 -1.0820e-07
 -5.7412e-08 -2.5055e-08 -3.0115e-08  ...  -7.2922e-08 -6.7022e-08 -2.2574e-08
  2.1813e-08  4.8608e-08  3.1222e-08  ...  -1.8694e-08 -7.9591e-09  3.9750e-08
                 ...                   ⋱                   ...                
  5.6013e-08  7.5526e-08  4.4496e-08  ...  -4.4128e-08 -5.9930e-08 -1.8247e-08
  7.7614e-08  9.8348e-08  1.0455e-07  ...   6.3272e-08  4.1781e-08  4.5901e-08
  5.9834e-08  7.1006e-08  9.0437e-08  ...   1.1654e-07  8.7550e-08  9.8837e-08

(2 ,2 ,.,.) = 
 -4.3810e-08  1.3270e-08  7.8275e-09  ...  -5.8804e-09 -2.6217e-08 -1.5649e-08
  4.1700e-08  1.0778e-07  1.0946e-07  ...   7.6403e-08  7.1450e-08  9.7615e-08
  1.0436e-07  1.6586e-07  1.5933e-07  ...   1.3517e-07  1.3487e-07  1.6449e-07
                 ...                   ⋱                   ...                
  9.8763e-08  1.5072e-07  1.2547e-07  ...   6.8316e-08  6.8382e-08  1.1367e-07
  9.1435e-08  1.3576e-07  1.3793e-07  ...   1.1678e-07  1.1723e-07  1.4394e-07
  6.2183e-08  8.8184e-08  1.0456e-07  ...   1.3941e-07  1.3333e-07  1.5844e-07
...   
     ⋮ 

(61,0 ,.,.) = 
 -6.1896e-02 -3.0206e-02  1.9225e-02  ...   4.3665e-02 -2.2114e-02 -4.2214e-02
 -3.8061e-02  6.0774e-03  4.5797e-02  ...   9.6029e-02  5.9254e-02  2.9958e-02
 -2.9672e-02  2.7766e-03  2.0457e-02  ...   5.9828e-02  4.1422e-02  2.3134e-02
                 ...                   ⋱                   ...                
  1.1916e-02  4.5701e-02  4.4892e-02  ...   4.7419e-02  2.2274e-02 -5.4993e-03
 -3.2468e-02 -1.2210e-02  2.2023e-02  ...   5.8061e-02 -7.5033e-03 -5.9736e-02
 -4.3314e-02 -2.8162e-02 -5.9126e-03  ...   8.8460e-02  8.4406e-03 -5.0019e-02

(61,1 ,.,.) = 
 -6.1292e-02 -1.4004e-02  1.7229e-02  ...   1.8349e-02 -3.2708e-02 -4.1060e-02
 -3.1506e-02  2.4460e-02  4.5516e-02  ...   6.6806e-02  4.6687e-02  3.3248e-02
 -3.2216e-02  2.0718e-02  2.3343e-02  ...   3.5265e-02  3.6478e-02  3.1291e-02
                 ...                   ⋱                   ...                
  1.7739e-02  6.1040e-02  4.8247e-02  ...   3.7785e-02  2.8894e-02  1.3984e-02
 -1.0890e-02  2.2079e-02  4.2737e-02  ...   6.0247e-02  1.6197e-02 -1.2493e-02
 -2.2284e-02  1.3220e-02  3.0897e-02  ...   1.0403e-01  4.0119e-02 -5.3310e-03

(61,2 ,.,.) = 
 -8.5322e-02 -4.2603e-02  6.8145e-03  ...   3.0751e-02 -3.4818e-02 -4.9945e-02
 -2.9215e-02  1.8165e-02  5.1092e-02  ...   9.0200e-02  5.3438e-02  4.0169e-02
 -3.9932e-02 -1.1100e-03  9.6176e-03  ...   2.4114e-02  2.6298e-02  2.5489e-02
                 ...                   ⋱                   ...                
 -3.1890e-03  3.0454e-02  1.6316e-02  ...   5.5054e-03 -6.2689e-03 -8.4638e-03
 -2.2995e-02 -2.8211e-03  2.3203e-02  ...   3.5888e-02 -1.4296e-02 -3.2419e-02
 -9.8894e-03  7.0542e-03  1.0659e-02  ...   7.0495e-02  1.2996e-02 -8.3417e-03
     ⋮ 

(62,0 ,.,.) = 
 -7.8699e-03  1.9911e-02  3.4208e-02  ...   2.8694e-02  1.2820e-02  1.8142e-02
  8.7942e-03 -3.2875e-02 -3.5713e-02  ...   7.2533e-02  4.5889e-02  5.2383e-02
 -3.6122e-02 -1.1878e-01 -1.3767e-01  ...   3.3811e-02  3.7806e-02  2.6944e-02
                 ...                   ⋱                   ...                
  1.7322e-02  3.9589e-03 -8.2269e-03  ...   2.7543e-03  1.8313e-02  1.6057e-02
 -9.5007e-04  1.6428e-02  1.7156e-02  ...   3.3672e-03  2.2857e-02  6.5783e-04
  6.1727e-03  2.7145e-02  1.4340e-02  ...   7.5867e-03  1.8770e-02  1.5624e-02

(62,1 ,.,.) = 
 -1.3423e-02 -5.0696e-04  8.0959e-03  ...  -6.0963e-03  9.2341e-03  1.5751e-02
 -1.8343e-02 -6.7982e-02 -7.0685e-02  ...   2.9855e-02  2.6264e-02  2.3773e-02
 -5.4359e-02 -1.4663e-01 -1.6211e-01  ...   1.1781e-02  3.2477e-02  1.1980e-02
                 ...                   ⋱                   ...                
  8.3686e-04 -1.7564e-02 -1.9535e-02  ...  -4.1382e-03  2.4658e-02  1.2893e-02
 -6.3183e-04  1.1788e-02  2.4810e-02  ...   6.1105e-03  3.9210e-02  9.6696e-03
 -7.1831e-03  6.6918e-03  5.2723e-03  ...  -7.6077e-03  2.7253e-02  1.7735e-02

(62,2 ,.,.) = 
 -2.3753e-04 -4.9343e-03  2.2991e-03  ...  -4.7958e-02 -2.6154e-02 -2.3525e-02
 -3.3053e-04 -5.1502e-02 -5.9977e-02  ...  -1.7369e-02 -2.3337e-02 -3.7312e-02
 -2.2674e-02 -9.9412e-02 -1.1176e-01  ...  -1.1725e-02 -8.3744e-03 -4.0615e-02
                 ...                   ⋱                   ...                
  1.1437e-02 -8.0313e-03 -1.4955e-03  ...  -3.4133e-02 -8.7267e-03 -2.3526e-02
  2.9522e-03  6.7770e-04  1.9933e-02  ...  -2.2002e-02  1.4814e-02 -1.4487e-02
 -1.9085e-02 -2.9430e-02 -2.3284e-02  ...  -4.8587e-02 -1.3049e-02 -2.4368e-02
     ⋮ 

(63,0 ,.,.) = 
 -3.6296e-02  7.1996e-03  1.9100e-02  ...   1.9602e-02  1.4870e-02 -1.7298e-02
 -1.1061e-02  8.5665e-02  1.2667e-01  ...   1.3744e-02 -5.5036e-05 -3.0162e-02
  1.1322e-01  1.8634e-01  5.0658e-02  ...  -1.7333e-01 -7.2041e-02 -6.2474e-02
                 ...                   ⋱                   ...                
 -5.3062e-02 -2.5781e-01 -2.6747e-01  ...   2.6781e-01  1.4344e-01  5.5145e-02
 -2.1009e-02 -2.9969e-02  1.0245e-01  ...   2.0843e-01 -4.1518e-03 -3.8118e-02
 -2.2155e-02  1.2380e-02  8.4302e-02  ...  -4.4992e-02 -1.4687e-01 -9.0890e-02

(63,1 ,.,.) = 
 -5.3969e-03  3.2799e-02  1.5486e-02  ...  -7.7451e-03  3.0229e-03  1.1216e-03
  6.1723e-02  1.4899e-01  1.4645e-01  ...  -2.8897e-02 -2.0227e-02 -9.1878e-03
  1.6146e-01  2.0886e-01 -2.5589e-02  ...  -2.7278e-01 -1.0735e-01 -6.2971e-02
                 ...                   ⋱                   ...                
 -1.3723e-01 -4.0863e-01 -3.8551e-01  ...   4.0846e-01  2.6202e-01  1.3491e-01
 -5.9388e-02 -6.1187e-02  1.4197e-01  ...   3.5780e-01  9.0893e-02 -1.7392e-03
  7.8613e-03  5.8403e-02  1.5339e-01  ...   4.7045e-02 -1.0095e-01 -9.7920e-02

(63,2 ,.,.) = 
 -5.6799e-03  1.3425e-02 -2.6461e-02  ...   4.4881e-03  2.0666e-03  1.3902e-02
  6.5943e-03  4.5181e-02  6.0260e-02  ...   1.4368e-02 -5.0725e-03  4.0505e-03
  5.5257e-02  1.2397e-01  4.3193e-02  ...  -1.4486e-01 -7.4489e-02 -5.7533e-02
                 ...                   ⋱                   ...                
 -3.1513e-02 -1.6334e-01 -1.5795e-01  ...   2.2904e-01  1.2017e-01  7.1998e-02
 -1.0456e-02 -1.1248e-03  8.4582e-02  ...   1.5748e-01  2.2142e-02 -1.0083e-02
 -4.8639e-03 -5.0065e-03  3.6341e-02  ...  -2.4361e-02 -7.1195e-02 -6.6788e-02
[torch.FloatTensor of size 64x3x7x7]
), ('bn1.weight', 
 2.3487e-01
 2.6626e-01
-5.1096e-08
 5.1870e-01
 3.4404e-09
 2.2239e-01
 4.2289e-01
 1.3153e-07
 2.5093e-01
 1.5152e-06
 3.1687e-01
 2.5049e-01
 3.7893e-01
 1.0862e-05
 2.7526e-01
 2.3674e-01
 2.4202e-01
 3.9531e-01
 4.6935e-01
 2.9090e-01
 2.7268e-01
 2.7803e-01
 2.9069e-01
 2.0693e-01
 2.5899e-01
 2.7871e-01
 2.9115e-01
 3.1601e-01
 3.8889e-01
 3.0411e-01
 2.6776e-01
 2.1093e-01
 2.8708e-01
 3.3243e-01
 4.2673e-01
 3.7326e-01
 7.4804e-08
 1.9068e-01
 1.4740e-08
 2.2303e-01
 1.7908e-01
 2.4860e-01
 2.7400e-01
 2.5923e-01
 2.9420e-01
 2.9924e-01
 2.2369e-01
 2.6280e-01
 2.2001e-08
 2.6610e-01
 2.2089e-01
 2.8429e-01
 3.3072e-01
 2.2681e-01
 3.6538e-01
 2.1230e-01
 2.3965e-01
 2.4950e-01
 5.2583e-01
 2.4825e-01
 2.9565e-01
 2.5878e-01
 4.8326e-01
 2.6670e-01
[torch.FloatTensor of size 64]
), ('bn1.bias', 
 2.3072e-01
 2.5382e-01
-1.0543e-06
-6.6439e-01
-1.6571e-08
 1.6152e-01
 4.5450e-01
-4.3020e-07
 3.0051e-01
-8.0052e-06
 3.4942e-01
 3.1148e-01
-2.4953e-01
-3.4749e-05
 1.0773e-01
 2.1897e-01
 3.8141e-01
-5.2988e-01
-6.2864e-01
 5.7140e-01
 2.9985e-01
 5.8430e-01
 4.8202e-01
 3.2853e-01
 1.9672e-01
 1.9496e-01
 1.5215e-01
 8.5522e-02
 5.1314e-01
 1.5237e-02
 1.6644e-01
 3.3239e-01
 2.4921e-01
 4.4337e-01
-2.8017e-01
-2.0385e-02
-2.4507e-07
 3.2134e-01
-4.9152e-08
 2.3777e-01
 2.3291e-01
 3.1527e-01
 4.2776e-01
 2.9313e-01
 2.6379e-01
 6.7598e-01
 4.2910e-01
 3.4566e-01
-8.6909e-08
 2.4729e-01
 3.0316e-01
 6.1577e-01
 3.9835e-01
 3.3207e-01
-4.1219e-01
 3.7807e-01
 1.7895e-01
 2.5748e-01
-4.4908e-01
 2.1306e-01
 5.6934e-01
 5.7274e-01
-4.0238e-01
 2.3406e-01
[torch.FloatTensor of size 64]
), ('bn1.running_mean', 
 2.7681e-03
-2.5769e-02
 2.1254e-07
-8.4605e-02
 2.1121e-08
 4.9691e-04
-2.2408e-02
-1.1582e-07
-4.8239e-03
 2.7507e-07
 3.9582e-02
 3.1994e-02
-3.7490e-02
-1.3716e-06
 6.6002e-03
 4.3782e-03
 6.4797e-02
 1.1176e-01
 3.6002e-02
-7.5075e-02
-3.8240e-02
 8.4358e-02
-5.2287e-02
-1.1799e-02
 1.3019e-03
 3.2172e-02
-1.7784e-02
-9.1009e-02
 1.1319e-01
-4.1632e-02
 8.7302e-03
 2.9693e-02
-7.0502e-02
-3.4847e-03
 1.0977e-01
-1.7341e-03
-5.9423e-08
 2.9330e-02
-7.8553e-09
 6.7320e-03
-3.7100e-03
 1.6028e-02
-2.7883e-02
 2.6593e-02
 2.8475e-02
-1.2735e-01
 4.4617e-02
 2.6329e-02
 2.1454e-08
-1.7045e-02
-3.5617e-03
-4.5841e-02
 6.3876e-02
 1.5220e-02
-3.8511e-02
-1.6428e-02
-1.6569e-02
 5.6057e-02
-8.0306e-02
-2.6646e-03
-4.1718e-02
 1.2611e-01
-4.9237e-02
-1.3261e-02
[torch.FloatTensor of size 64]
), ('bn1.running_var', 
 1.0169e+00
 3.7167e+00
 5.8133e-11
 3.2825e+00
 1.7107e-13
 6.5823e-01
 4.3701e+00
 6.6005e-12
 9.1552e-01
 1.9318e-09
 4.1256e+00
 2.7440e+00
 2.8391e+00
 4.7966e-08
 1.1072e+01
 5.0075e-01
 2.2313e+00
 4.8257e+00
 2.6986e+00
 9.3700e+00
 3.7339e+00
 5.4843e+00
 5.7127e+00
 4.4544e-01
 4.3628e-01
 7.1563e+00
 1.3718e+01
 5.2512e+00
 6.8174e+00
 1.6724e+00
 1.6534e+00
 1.2325e+00
 4.9076e+00
 3.0731e+00
 4.2384e+00
 4.9936e+00
 1.4465e-12
 1.5212e+00
 1.0352e-13
 3.5134e-01
 1.7025e-01
 1.4205e+00
 1.9085e+00
 2.1512e+00
 2.6608e+00
 4.8444e+00
 1.9297e+00
 1.4999e+00
 2.9481e-13
 1.5306e+00
 3.6503e-01
 2.9376e+00
 5.4664e+00
 7.0792e-01
 3.3315e+00
 7.7180e-01
 2.4068e+00
 6.5214e+00
 4.1263e+00
 1.0506e+00
 2.9530e+00
 1.1366e+01
 4.7690e+00
 1.6559e+00
[torch.FloatTensor of size 64]
), ('layer1.0.conv1.weight', 
(0 ,0 ,.,.) = 
  5.7593e-02 -9.5114e-02 -2.0272e-02
 -7.4556e-02 -7.9931e-01 -2.1284e-01
  6.5571e-02 -9.6534e-02 -1.2111e-02

(0 ,1 ,.,.) = 
 -6.9944e-03  1.4266e-02  5.5824e-04
  4.1238e-02 -1.6125e-01 -2.3208e-02
  3.2887e-03  7.1779e-03  7.1686e-02

(0 ,2 ,.,.) = 
 -2.3627e-09 -3.9270e-08 -3.2971e-08
  2.1737e-08  8.3299e-09  1.2543e-08
  1.1382e-08  8.8096e-09  1.5506e-08
   ...

(0 ,61,.,.) = 
 -3.6921e-02  1.8294e-02 -2.9358e-02
 -9.8615e-02 -4.3645e-02 -5.2717e-02
 -7.9635e-02  2.9396e-02  4.1479e-03

(0 ,62,.,.) = 
  1.6948e-02  1.3978e-02  9.6727e-03
  1.4297e-02 -6.6985e-04 -2.2077e-02
  1.2398e-02  3.5454e-02 -2.2320e-02

(0 ,63,.,.) = 
 -2.2600e-02 -2.5331e-02 -2.3548e-02
  6.0860e-02 -9.6779e-02  2.4057e-02
 -1.2750e-02  9.2237e-02  4.0152e-03
     ⋮ 

(1 ,0 ,.,.) = 
  2.2160e-02  4.2177e-02 -1.6428e-02
 -2.9667e-02  5.6865e-02  2.5486e-02
  4.3847e-03  5.1188e-02  1.0436e-02

(1 ,1 ,.,.) = 
  2.5342e-02  5.4374e-02  5.3888e-02
 -2.8334e-02 -2.0139e-01 -5.6358e-02
  5.6774e-02  7.4188e-02  2.1585e-02

(1 ,2 ,.,.) = 
 -3.1458e-08  3.5335e-08  5.3791e-08
 -2.6896e-08  5.1530e-08  5.4480e-08
 -3.8487e-08 -1.1234e-08 -7.5787e-09
   ...

(1 ,61,.,.) = 
 -1.2754e-01  4.3552e-02 -6.5607e-02
 -6.0462e-02  1.5989e-01 -7.7070e-03
 -9.4202e-02  5.0750e-02 -7.8154e-02

(1 ,62,.,.) = 
 -3.3309e-02  1.6631e-03 -8.8497e-03
  1.5553e-02 -5.8277e-02 -2.7437e-02
  1.3126e-02 -3.0268e-02 -2.1661e-03

(1 ,63,.,.) = 
 -4.2313e-03  3.4517e-02  3.8193e-03
  5.4317e-02 -1.2457e-02  3.2900e-02
  2.2000e-04  1.6040e-02  1.2764e-01
     ⋮ 

(2 ,0 ,.,.) = 
 -3.5247e-02  8.0748e-03  2.0353e-02
  1.7344e-02 -2.4320e-02 -1.5511e-04
 -2.7634e-04  2.8024e-02 -2.3777e-03

(2 ,1 ,.,.) = 
 -2.3741e-02 -3.2057e-03 -5.7059e-03
 -1.1582e-02  1.7200e-03  2.1067e-02
  4.3606e-03 -4.6459e-02 -7.2954e-02

(2 ,2 ,.,.) = 
  3.1002e-08  5.3568e-08  3.1873e-08
 -1.6063e-08 -1.8072e-08 -1.9508e-09
 -5.8339e-08 -4.5366e-08 -1.2395e-08
   ...

(2 ,61,.,.) = 
 -1.9689e-03 -2.6809e-02 -4.3760e-02
  2.4518e-02 -2.8396e-02 -3.5896e-02
 -1.7883e-04 -2.4661e-02 -2.0085e-02

(2 ,62,.,.) = 
  2.1551e-02  2.2789e-03 -2.5823e-02
  2.3272e-02 -7.9333e-03 -2.0814e-03
 -5.7062e-03 -2.6934e-02 -1.4421e-02

(2 ,63,.,.) = 
 -1.9674e-02  2.7914e-02 -2.0025e-02
  6.3222e-02 -3.9077e-02 -3.3220e-03
 -2.7434e-02  1.1390e-02 -3.1608e-03
...   
     ⋮ 

(61,0 ,.,.) = 
  4.3440e-03 -7.6970e-03 -6.4950e-02
  1.3846e-02 -2.2803e-02 -4.6478e-02
  2.7776e-02  1.6080e-02 -1.3363e-02

(61,1 ,.,.) = 
  4.7379e-02 -2.4982e-02 -2.7605e-02
  7.0091e-02  4.2084e-03 -1.0805e-01
  1.7526e-02  4.5647e-02  7.8810e-03

(61,2 ,.,.) = 
  2.6680e-09  2.7671e-08  2.4702e-08
  6.3905e-09  4.1020e-08  3.3631e-08
  5.8335e-09  1.3334e-08  9.6604e-09
   ...

(61,61,.,.) = 
  4.5900e-03  4.7084e-02 -8.6949e-03
 -6.3011e-03  5.9585e-02  5.8667e-03
 -2.0255e-02  4.3285e-02  4.5094e-03

(61,62,.,.) = 
  1.1253e-03 -5.7461e-03 -6.8411e-03
  6.0616e-03  7.3295e-03 -1.1784e-02
 -1.1455e-03  5.1868e-03 -1.9867e-02

(61,63,.,.) = 
  1.7529e-02  4.4606e-02 -2.6595e-02
  2.2102e-02  4.5857e-02  2.3347e-02
  1.8052e-02  5.9689e-02  1.7129e-02
     ⋮ 

(62,0 ,.,.) = 
 -2.9112e-02  3.4242e-03 -1.7523e-02
 -2.3682e-02  2.2716e-02 -3.8301e-02
 -1.0308e-02 -4.3802e-03 -2.3582e-02

(62,1 ,.,.) = 
 -4.9607e-02 -3.2724e-03 -1.5345e-02
 -1.3524e-02  5.4842e-02  1.1187e-02
 -2.3549e-02 -2.8495e-02 -6.6371e-02

(62,2 ,.,.) = 
 -4.9804e-08 -2.8211e-08 -2.0583e-08
 -5.2389e-08 -2.8522e-08 -3.5099e-08
 -3.2171e-08 -3.4110e-08 -4.3153e-08
   ...

(62,61,.,.) = 
  3.4487e-03  2.6532e-02 -1.1202e-02
  7.0925e-03  3.7903e-02 -3.2481e-02
  4.1381e-02  3.2329e-02  2.8309e-03

(62,62,.,.) = 
 -6.5955e-03  1.6476e-02  2.1810e-02
 -1.2293e-02  2.2310e-02  1.2645e-02
 -8.9897e-03  1.1948e-03 -5.2390e-03

(62,63,.,.) = 
 -2.5295e-03  7.2689e-02 -7.8046e-03
 -4.2221e-02  7.9756e-02 -2.7738e-02
  4.6716e-03 -5.6596e-02 -8.2261e-02
     ⋮ 

(63,0 ,.,.) = 
  5.2235e-02  3.5231e-03 -3.3131e-02
  3.1048e-02  1.6193e-02  1.7283e-02
  1.4446e-02  2.4302e-02 -1.9689e-03

(63,1 ,.,.) = 
 -2.4717e-02  8.3009e-03 -6.1336e-02
 -1.6134e-02  5.5323e-02 -6.5029e-02
 -2.4715e-02  1.0030e-03  3.2437e-02

(63,2 ,.,.) = 
  1.8496e-08  5.2798e-09  4.1820e-08
  3.7489e-08  2.5450e-08  3.0419e-08
  1.1246e-08 -5.6956e-09 -2.0008e-08
   ...

(63,61,.,.) = 
  7.1194e-03 -4.1052e-02 -1.0002e-02
  2.5924e-02 -6.3819e-02  1.3366e-02
  2.9751e-02 -7.9476e-03  1.4007e-02

(63,62,.,.) = 
 -2.5166e-03  2.2051e-02 -1.9967e-02
 -5.9436e-02  4.3872e-02  2.6832e-02
 -1.7509e-02  2.4625e-02  2.4822e-02

(63,63,.,.) = 
  3.5832e-02 -7.0357e-02  3.9452e-03
 -2.9835e-02  9.2727e-02  1.9336e-02
 -2.9145e-02 -9.7087e-03 -7.3388e-02
[torch.FloatTensor of size 64x64x3x3]
), ('layer1.0.bn1.weight', 
 0.3090
 0.2147
 0.2366
 0.4259
 0.5137
 0.2181
 0.2204
 0.2300
 0.2640
 0.2695
 0.2138
 0.4602
 0.2661
 0.2319
 0.3900
 0.2389
 0.2660
 0.3634
 0.3474
 0.2477
 0.3285
 0.5349
 0.6440
 0.2275
 0.4482
 0.3078
 0.2604
 0.4651
 0.2179
 0.2858
 0.3426
 0.4420
 0.4450
 0.4500
 0.5516
 0.5092
 0.2564
 0.2634
 0.5664
 0.6410
 0.2228
 0.1986
 0.2460
 0.2242
 0.2143
 0.1982
 0.6368
 0.3106
 0.5049
 0.2403
 0.3065
 0.3760
 0.3794
 0.4281
 0.2991
 0.3326
 0.2596
 0.3345
 0.2006
 0.4351
 0.1683
 0.5149
 0.2629
 0.3254
[torch.FloatTensor of size 64]
), ('layer1.0.bn1.bias', 
 0.1657
 0.2420
 0.1780
-0.0431
-0.2053
 0.1598
 0.2929
 0.0912
 0.1116
 0.0884
 0.1104
-0.2035
 0.1539
 0.0857
-0.1094
 0.0654
 0.0766
-0.2067
-0.0212
 0.1396
 0.0401
-0.2827
-0.3257
-0.0035
-0.4373
-0.1248
 0.1282
-0.0874
 0.1199
-0.0829
-0.5315
-0.0780
-0.3876
-0.0547
-0.1816
-0.1888
 0.1320
 0.0031
-0.2697
-0.2984
 0.1394
 0.2597
 0.1372
 0.0053
 0.0132
 0.3295
-0.2715
-0.0187
-0.2467
 0.1579
 0.0165
-0.0890
-0.1903
-0.0787
 0.1700
-0.4832
 0.0619
-0.0677
 0.3125
-0.5064
 0.3138
-0.2617
-0.1545
 0.0063
[torch.FloatTensor of size 64]
), ('layer1.0.bn1.running_mean', 
-0.4332
-0.1757
 0.0307
-0.7058
-1.6364
-0.7989
-0.0678
-0.1956
-1.1260
-0.9578
 0.0030
-1.8265
-0.0393
-0.8680
-1.1062
-0.6359
-0.9872
-0.5778
-1.3349
-0.3408
-1.1982
-1.6058
-2.1702
-0.8814
-0.8175
-0.6951
 0.6542
-1.6422
 0.2811
 0.3163
-0.4123
-1.4023
-1.5044
-2.5031
-2.1580
-1.3645
-0.8579
-0.2206
-2.5548
-2.2695
-0.1609
-0.8552
 0.5289
 1.3492
-0.9382
-0.3356
-2.9168
-1.5967
-1.8875
-1.6166
-1.9443
-2.0195
-0.9671
-1.3881
-1.8836
 0.1869
-1.3487
-0.4593
-0.4542
-0.9032
-0.0768
-1.7719
 1.2484
-0.9139
[torch.FloatTensor of size 64]
), ('layer1.0.bn1.running_var', 
 0.4351
 0.2044
 0.2344
 0.5559
 0.9626
 0.3484
 0.0871
 0.6851
 0.4714
 1.2642
 0.1519
 0.6730
 0.2430
 0.5577
 0.8701
 0.2419
 0.2052
 0.8149
 0.3040
 0.2617
 0.8060
 0.8007
 1.5581
 0.2404
 0.4445
 0.6765
 0.5562
 0.9378
 0.2584
 0.3173
 0.0962
 0.4118
 0.5197
 0.9767
 1.2703
 0.8908
 0.3609
 0.2227
 1.1588
 1.5965
 0.4060
 0.2559
 0.1763
 0.2797
 0.3757
 0.1282
 1.8280
 0.3145
 0.7419
 0.2129
 0.8122
 0.4660
 0.4065
 0.4914
 0.4814
 0.1697
 0.4000
 0.3867
 0.1499
 0.4137
 0.0671
 0.8303
 0.2434
 0.3449
[torch.FloatTensor of size 64]
), ('layer1.0.conv2.weight', 
(0 ,0 ,.,.) = 
  2.5947e-02 -1.0458e-01 -4.7712e-03
 -8.6223e-02 -3.3021e-01 -1.0275e-01
 -5.7426e-02 -1.9074e-01 -5.4646e-02

(0 ,1 ,.,.) = 
 -1.6951e-02  2.1384e-02 -2.1074e-03
 -3.2983e-03  4.5014e-02 -1.1510e-02
 -5.9602e-02  6.4942e-03  2.9080e-03

(0 ,2 ,.,.) = 
 -4.4903e-03  1.9637e-02  1.3167e-02
  1.3050e-02 -7.7471e-03  1.1931e-02
  1.3454e-02  1.1103e-02  5.5145e-03
   ...

(0 ,61,.,.) = 
  1.2706e-03 -7.7438e-03  2.0753e-02
 -4.0024e-02 -4.0383e-02 -3.4821e-02
 -2.0251e-02 -9.5164e-03  1.3954e-02

(0 ,62,.,.) = 
 -2.3430e-03  3.2303e-02 -4.3342e-03
  8.6194e-03  1.0553e-02  1.8074e-03
 -1.2760e-02 -1.0232e-02  4.5711e-03

(0 ,63,.,.) = 
  1.5302e-02  2.1361e-02 -7.0908e-03
 -1.4221e-02  4.5979e-02  2.1369e-02
  3.1312e-02  6.6428e-02  2.1465e-02
     ⋮ 

(1 ,0 ,.,.) = 
  5.3422e-02  4.0515e-02  9.6680e-03
  3.2884e-02 -2.3474e-02  3.4642e-02
 -1.2861e-02  5.0066e-02  5.4579e-02

(1 ,1 ,.,.) = 
  2.8764e-02  4.3431e-02  2.8258e-02
  2.8734e-02 -3.5459e-02 -5.2788e-02
 -5.5119e-02 -7.1813e-02 -8.2970e-02

(1 ,2 ,.,.) = 
  9.5293e-02  1.2549e-01 -6.4001e-02
 -4.1166e-02 -9.0480e-04  5.1387e-02
 -1.1311e-01 -7.9823e-02  1.4373e-01
   ...

(1 ,61,.,.) = 
 -7.6924e-03  2.0647e-02  1.9521e-02
 -6.7352e-03  1.2601e-04  4.8309e-03
 -6.2405e-03 -9.2119e-03 -2.5806e-04

(1 ,62,.,.) = 
 -2.6153e-02 -2.4641e-02  4.0970e-02
 -1.9164e-02 -1.0160e-02  3.3163e-02
  5.4200e-03  9.0485e-04  6.7799e-04

(1 ,63,.,.) = 
  7.7762e-03  2.6447e-02  6.3650e-02
 -3.0608e-02  2.4959e-02  1.2951e-02
 -2.0938e-02 -7.7342e-03 -3.8790e-02
     ⋮ 

(2 ,0 ,.,.) = 
  1.0893e-02 -1.4409e-02  1.5730e-02
  1.6655e-02  4.4535e-02  6.3212e-02
  3.4121e-02  7.3135e-02  5.9203e-02

(2 ,1 ,.,.) = 
  2.3195e-03  7.7598e-03  2.0308e-02
  2.0457e-02  4.0029e-02  3.4744e-02
 -4.7356e-02 -3.7286e-02  1.4542e-02

(2 ,2 ,.,.) = 
 -2.2742e-02 -1.9000e-02 -8.4317e-03
 -9.8759e-04  2.1510e-02  6.3959e-03
 -9.4558e-03  2.6833e-03 -3.1136e-02
   ...

(2 ,61,.,.) = 
 -7.5787e-03 -1.6056e-02 -6.4204e-04
 -5.5104e-03  1.4252e-02  4.5000e-02
 -9.2800e-03  2.2351e-02  4.1728e-02

(2 ,62,.,.) = 
  2.5705e-02  4.8207e-02  7.9145e-02
 -4.4350e-03  3.8872e-03  4.1694e-02
  8.0536e-04 -1.0601e-02  9.2706e-03

(2 ,63,.,.) = 
 -3.3892e-02  9.3543e-03  4.1746e-02
 -1.6470e-02  3.9542e-03  6.2438e-02
 -3.1055e-02 -3.6302e-03  7.0817e-02
...   
     ⋮ 

(61,0 ,.,.) = 
 -7.1044e-05 -9.0020e-03 -2.6998e-03
  3.0072e-03  1.1579e-02  1.5214e-02
  3.4832e-03  1.1353e-05  1.6320e-02

(61,1 ,.,.) = 
 -2.6334e-02  2.1967e-02 -6.0039e-02
  4.4519e-02  1.3203e-01 -9.1163e-03
  5.4242e-02  1.3726e-01  2.7454e-02

(61,2 ,.,.) = 
  1.7122e-02  3.7646e-03  1.4872e-02
  1.2092e-02  1.1319e-02  3.4667e-02
  8.1790e-03 -2.0805e-02  2.7143e-02
   ...

(61,61,.,.) = 
 -1.0111e-02 -1.0526e-02  2.8394e-02
 -2.5112e-02 -2.2196e-02  3.7229e-02
 -3.8220e-02 -4.6644e-02  1.5660e-02

(61,62,.,.) = 
 -2.5913e-03 -2.4307e-02  1.0611e-02
 -2.1730e-02 -4.3938e-02 -7.1536e-03
 -2.5171e-02 -5.9467e-02 -2.5577e-02

(61,63,.,.) = 
  2.8652e-02  2.5850e-04  1.1416e-03
  3.7812e-02 -1.1271e-03  9.6027e-03
  3.9350e-02  1.0134e-02  1.0449e-02
     ⋮ 

(62,0 ,.,.) = 
 -7.9305e-03  7.0872e-03  2.1412e-02
 -6.0065e-02  1.4147e-03  9.7281e-02
 -6.0130e-02 -2.1725e-02  3.6863e-02

(62,1 ,.,.) = 
  2.8024e-02  2.6183e-02 -2.3027e-02
  5.1900e-02 -2.0588e-03 -1.0940e-01
 -3.2729e-02 -6.2752e-03  8.0630e-03

(62,2 ,.,.) = 
 -1.8062e-02 -1.9510e-02  4.3163e-02
  4.6080e-02  2.9494e-02  4.0844e-02
  5.9607e-03 -6.5891e-03 -6.4623e-03
   ...

(62,61,.,.) = 
  2.2193e-02  8.4653e-03  3.6764e-03
  1.7549e-02  2.1971e-02 -4.5108e-03
  2.1124e-02  3.4591e-02 -1.6310e-02

(62,62,.,.) = 
  3.8144e-02  4.8395e-02 -9.5556e-02
  1.8923e-02  1.1341e-02 -7.6311e-02
  4.7358e-03  3.2138e-02 -7.4777e-02

(62,63,.,.) = 
 -1.9031e-02 -3.2568e-02 -3.8251e-02
  1.0705e-02  2.3121e-03 -7.5078e-02
  3.3316e-02  3.5515e-02 -2.1023e-03
     ⋮ 

(63,0 ,.,.) = 
 -1.3330e-01  7.4683e-02 -3.8624e-03
  9.1377e-02  8.2415e-02  3.9469e-02
 -1.8265e-02 -5.9943e-02  8.9354e-02

(63,1 ,.,.) = 
  1.5566e-02 -4.1716e-02  1.0633e-02
  7.2644e-03  3.1934e-02  1.2732e-03
 -2.0851e-02 -3.7593e-03 -7.0170e-02

(63,2 ,.,.) = 
 -6.6139e-02  1.0627e-01  1.9590e-02
  5.4987e-02 -1.5552e-01 -1.8819e-02
 -4.2554e-03  4.4964e-02 -2.4632e-02
   ...

(63,61,.,.) = 
 -6.1691e-02 -4.5531e-02 -9.1721e-03
  4.3995e-02  4.5703e-02 -7.0108e-02
  1.1388e-02  4.4678e-02 -4.5953e-02

(63,62,.,.) = 
  4.3432e-03  2.3194e-02 -2.1895e-02
 -8.0216e-02 -5.7606e-02 -9.8455e-03
 -3.3285e-02 -1.1468e-01 -2.3779e-02

(63,63,.,.) = 
 -6.3785e-02 -2.4485e-02 -4.9061e-02
 -6.1594e-02  1.0328e-01  5.9685e-03
  8.1863e-02 -3.0314e-02 -4.6373e-03
[torch.FloatTensor of size 64x64x3x3]
), ('layer1.0.bn2.weight', 
 0.2496
 0.2198
 0.2756
 0.6073
 0.2654
 0.2942
 0.1136
 0.4425
 0.2868
 0.2974
 0.2506
 0.4103
 0.4855
 0.3383
 0.4670
 0.1772
 0.2171
 0.5025
 0.2263
 0.3667
 0.4867
 0.4586
 0.4652
 0.2200
 0.1510
 0.2761
 0.3813
 0.2803
 0.2382
 0.3953
 0.3032
 0.3163
 0.2025
 0.2323
 0.2003
 0.1661
 0.4690
 0.3476
 0.3414
 0.2274
 0.2485
 0.2356
 0.2726
 0.4657
 0.3429
 0.2465
 0.4674
 0.2812
 0.6241
 0.4152
 0.3403
 0.4218
 0.1152
 0.2985
 0.5802
 0.2795
 0.4706
 0.4517
 0.4303
 0.2749
 0.3427
 0.1137
 0.5069
 0.4370
[torch.FloatTensor of size 64]
), ('layer1.0.bn2.bias', 
 0.2275
 0.0087
-0.0673
-0.0688
 0.3598
-0.2017
-0.0000
 0.0237
 0.3955
 0.0371
 0.0069
 0.2758
-0.0703
-0.2397
-0.0818
-0.0941
-0.1454
 0.0373
-0.3617
-0.3956
-0.4079
 0.0036
-0.2788
-0.0353
-0.0703
 0.2101
-0.0046
-0.1966
-0.2807
-0.0165
 0.2645
-0.0894
-0.2105
-0.1303
 0.1721
 0.0534
-0.2230
-0.0480
 0.2457
 0.2095
 0.1622
 0.1137
 0.1146
-0.1487
-0.0322
-0.3055
 0.4912
 0.1087
 0.0128
 0.1004
 0.4155
-0.0147
 0.0239
 0.0998
-0.1727
 0.1008
-0.1456
-0.2274
 0.1364
 0.2013
-0.0574
 0.2353
-0.1130
 0.3093
[torch.FloatTensor of size 64]
), ('layer1.0.bn2.running_mean', 
 0.1677
 0.0052
 0.7868
 0.1670
 0.4774
-0.0362
-0.0578
 0.0020
-0.3420
 0.0674
-0.0970
-0.1000
-0.0659
-0.0385
-0.0709
-0.2218
-0.1343
 0.1198
-0.0602
 0.0006
 0.0864
-0.1466
 0.0354
-0.1539
-0.0416
-0.4317
 0.0330
-0.0797
-0.5868
-0.2461
-0.1505
-0.4012
-0.2187
-0.6351
 0.0698
 0.1412
 0.2754
-0.5645
-0.1113
-0.2414
-0.1313
-0.0215
 0.1264
-0.1684
 0.1693
-0.4684
-0.6908
 0.2044
 0.0015
-0.0543
-0.1487
 0.1262
-0.1145
-0.1597
 0.1230
-0.1605
-0.2256
-0.0995
-0.1621
 0.3230
-0.0055
 0.1091
 0.0781
 0.0121
[torch.FloatTensor of size 64]
), ('layer1.0.bn2.running_var', 
 0.1130
 0.0412
 0.0335
 0.1282
 0.2084
 0.0307
 0.0606
 0.0737
 0.0313
 0.0409
 0.1376
 0.0399
 0.0437
 0.0282
 0.1588
 0.0288
 0.0837
 0.0799
 0.0177
 0.1839
 0.0884
 0.3054
 0.1512
 0.0394
 0.0374
 0.0969
 0.1719
 0.0610
 0.0607
 0.1560
 0.0448
 0.1236
 0.0464
 0.1005
 0.0498
 0.0481
 0.0450
 0.1229
 0.0623
 0.0381
 0.0229
 0.1227
 0.1656
 0.1047
 0.1316
 0.1834
 0.0622
 0.1272
 0.1929
 0.0419
 0.0263
 0.2623
 0.0712
 0.1442
 0.0937
 0.0983
 0.1163
 0.1511
 0.1009
 0.0342
 0.1854
 0.0698
 0.0631
 0.0350
[torch.FloatTensor of size 64]
), ('layer1.1.conv1.weight', 
(0 ,0 ,.,.) = 
  1.9712e-02 -5.2562e-03 -3.7619e-03
 -1.9635e-02 -1.2336e-02 -3.5196e-02
  5.0761e-02  7.5668e-02  4.3344e-02

(0 ,1 ,.,.) = 
  1.4160e-02 -8.6094e-03 -1.0541e-02
 -4.2586e-02 -2.3814e-02 -5.4694e-02
 -1.4018e-03  4.6720e-02  5.0898e-02

(0 ,2 ,.,.) = 
  2.1559e-02  4.1633e-03 -9.7118e-03
 -9.3201e-03 -2.5432e-02 -2.8274e-02
 -3.0107e-02 -4.8230e-02 -2.6001e-02
   ...

(0 ,61,.,.) = 
  5.4300e-03  9.1875e-02  3.1938e-03
 -1.7945e-02  5.7266e-02 -8.4098e-03
 -3.4961e-02 -2.3296e-02 -3.5089e-02

(0 ,62,.,.) = 
  2.5603e-02 -3.1689e-02 -5.4160e-02
  6.9736e-02 -1.0716e-02 -6.8034e-02
  3.5578e-02  3.4749e-02 -1.9334e-02

(0 ,63,.,.) = 
 -6.5420e-02 -4.6427e-03 -2.3362e-02
  7.5833e-02  9.1174e-03 -4.9701e-02
  6.2944e-02 -9.8735e-02  3.3158e-02
     ⋮ 

(1 ,0 ,.,.) = 
 -9.0557e-03 -3.0753e-02  1.1953e-02
 -3.2539e-02 -6.2846e-03 -2.0235e-02
  4.7996e-03 -2.1462e-02 -4.1557e-03

(1 ,1 ,.,.) = 
  1.7163e-02 -2.3303e-03  7.3972e-02
 -3.2105e-02 -7.7536e-02 -1.2648e-02
  3.8985e-02 -4.3170e-02  1.0904e-02

(1 ,2 ,.,.) = 
 -2.9643e-02 -5.8534e-02 -5.9736e-02
 -2.9437e-02 -3.6441e-02 -1.2380e-02
 -2.2775e-02 -2.4485e-03 -1.6124e-03
   ...

(1 ,61,.,.) = 
  2.6830e-02  1.4267e-02  6.2658e-02
  3.0585e-04 -5.3241e-03  3.2786e-03
  2.1097e-02 -2.3189e-02  1.2102e-02

(1 ,62,.,.) = 
 -6.1182e-02 -2.9227e-02  2.0036e-02
 -7.6089e-02 -7.7057e-02  8.6544e-02
 -3.9228e-02 -3.2361e-02 -8.8970e-02

(1 ,63,.,.) = 
 -1.3372e-01  8.8362e-02  8.3836e-02
 -1.1688e-02  4.3156e-01 -3.3629e-03
 -2.3925e-02 -1.0092e-01 -1.0184e-01
     ⋮ 

(2 ,0 ,.,.) = 
  8.0165e-02  4.3042e-02  2.7325e-03
  3.5269e-02 -1.5504e-02 -3.5011e-02
 -1.7164e-02 -2.6827e-02 -3.3946e-02

(2 ,1 ,.,.) = 
  4.5439e-02  5.1585e-02  1.8321e-02
 -3.9647e-02  2.3956e-02 -2.6609e-02
 -3.0358e-02 -6.4729e-02  2.5834e-02

(2 ,2 ,.,.) = 
  3.8105e-02  4.0986e-02  4.1005e-02
  1.7584e-02 -1.6494e-02 -3.2716e-02
  5.5886e-03 -1.7068e-02 -3.0605e-02
   ...

(2 ,61,.,.) = 
 -1.3694e-01 -1.4074e-01  5.1423e-02
 -1.2521e-01 -1.3128e-01  7.5733e-02
 -4.5032e-02 -1.7081e-02  7.1252e-02

(2 ,62,.,.) = 
  6.3381e-02  1.5874e-02 -2.7322e-02
  8.0356e-02  3.6104e-02 -2.8506e-02
  2.6638e-02  2.2021e-02  3.2345e-02

(2 ,63,.,.) = 
 -1.2068e-03 -4.6179e-02 -1.5351e-02
 -1.1276e-02  1.9200e-02  3.4336e-02
  1.6540e-02 -7.8592e-03 -2.5392e-02
...   
     ⋮ 

(61,0 ,.,.) = 
  3.3384e-02  6.9963e-02  1.0745e-02
 -1.7518e-02 -5.3524e-02 -6.4960e-02
  3.4248e-04 -4.5557e-02 -4.7336e-02

(61,1 ,.,.) = 
 -5.1031e-03  7.9784e-03 -8.6553e-04
 -1.6557e-03  1.4661e-02  5.3365e-03
 -3.1784e-02 -6.6940e-02 -4.6889e-02

(61,2 ,.,.) = 
 -1.1775e-02  7.2759e-03  7.6622e-03
 -6.1288e-02 -5.2078e-02 -4.5152e-02
 -8.6584e-02 -9.7381e-02 -1.0405e-01
   ...

(61,61,.,.) = 
  2.1243e-02  6.2456e-02  2.5188e-02
 -2.2911e-02 -2.1100e-03 -2.7573e-02
  4.6557e-02  6.4980e-02  3.1879e-02

(61,62,.,.) = 
  6.2867e-03  2.4255e-02  8.9674e-02
 -7.7718e-03 -5.4311e-02 -4.6843e-02
 -6.7499e-03 -6.6857e-02 -4.9842e-02

(61,63,.,.) = 
  4.7326e-03 -3.9533e-02  1.1500e-03
 -2.7957e-02 -1.3466e-01 -6.0753e-02
 -3.2010e-03  7.2213e-02  1.1009e-01
     ⋮ 

(62,0 ,.,.) = 
  2.3763e-02 -1.7876e-02 -7.4843e-03
  1.6239e-02  5.4479e-04 -3.3735e-02
 -2.2854e-02 -1.4316e-03  1.1010e-02

(62,1 ,.,.) = 
  5.2277e-03 -2.5941e-03  5.9594e-03
 -2.9058e-03 -7.3409e-03  3.0652e-02
  7.5540e-02  6.6445e-03  2.5518e-03

(62,2 ,.,.) = 
 -6.5970e-02 -4.1286e-02 -3.0278e-02
 -3.5108e-02 -3.9099e-02 -1.6818e-02
 -1.0224e-02 -8.6995e-03 -5.9939e-04
   ...

(62,61,.,.) = 
  2.1233e-02 -2.4559e-02 -7.4436e-03
 -4.3734e-03 -3.2864e-02 -3.3453e-02
  8.9269e-03 -1.7646e-02  3.8375e-04

(62,62,.,.) = 
 -7.8930e-02 -7.2940e-02 -6.7911e-02
 -8.4146e-02 -8.3657e-02  5.3666e-02
 -3.5577e-02 -3.6835e-02  5.8987e-03

(62,63,.,.) = 
  8.3767e-02  8.0476e-05  7.2164e-02
 -6.4219e-02 -1.2661e-01  4.6026e-02
  9.3033e-02 -4.7521e-02  3.6777e-02
     ⋮ 

(63,0 ,.,.) = 
  4.1012e-02  1.3361e-03 -5.8616e-02
  4.2461e-02  2.9437e-03 -2.0445e-02
  7.6097e-02  5.2504e-02 -5.5636e-03

(63,1 ,.,.) = 
  2.2046e-02  4.0888e-03  1.4645e-02
 -7.7532e-02 -1.1912e-01 -7.0892e-02
 -1.0618e-02 -3.2121e-02 -2.3969e-02

(63,2 ,.,.) = 
 -2.1612e-02 -2.6110e-03 -3.1664e-02
 -3.2892e-02 -3.9771e-02 -5.1463e-02
 -2.6150e-02 -3.6554e-02 -2.3315e-02
   ...

(63,61,.,.) = 
  4.4600e-03  8.4181e-02  2.3199e-02
  5.7595e-02  1.3036e-01  3.2172e-02
 -2.2774e-03  4.2065e-02 -4.8619e-02

(63,62,.,.) = 
  3.1533e-02 -4.3655e-02  2.0361e-02
  3.9973e-03 -5.1430e-02 -6.3839e-02
  6.4002e-03  4.5347e-02  4.7346e-02

(63,63,.,.) = 
 -9.1818e-02  1.0264e-02  9.6565e-02
 -2.1635e-03 -2.3452e-02 -5.9038e-02
  1.9402e-02  2.8854e-02 -9.6113e-02
[torch.FloatTensor of size 64x64x3x3]
), ('layer1.1.bn1.weight', 
 0.3910
 0.4375
 0.3746
 0.3990
 0.3404
 0.3503
 0.2618
 0.2707
 0.2865
 0.4308
 0.1895
 0.3041
 0.3837
 0.2944
 0.2105
 0.3304
 0.2943
 0.2887
 0.2060
 0.4627
 0.2335
 0.1831
 0.4489
 0.2830
 0.3389
 0.2997
 0.3503
 0.2735
 0.3908
 0.2817
 0.2636
 0.4462
 0.3282
 0.3776
 0.4471
 0.3878
 0.2516
 0.3172
 0.3661
 0.3166
 0.3818
 0.3128
 0.2274
 0.3627
 0.2902
 0.2381
 0.2988
 0.2469
 0.3840
 0.2886
 0.3197
 0.2879
 0.3218
 0.4559
 0.3500
 0.2420
 0.3396
 0.3519
 0.3839
 0.3806
 0.4039
 0.2826
 0.4594
 0.3342
[torch.FloatTensor of size 64]
), ('layer1.1.bn1.bias', 
-0.0997
-0.4755
-0.0474
-0.2698
-0.0834
-0.0072
 0.0474
 0.1022
-0.0170
-0.1471
 0.2307
 0.1447
-0.1775
 0.0273
 0.1559
-0.1836
 0.1238
-0.1522
 0.0554
-0.2881
-0.2606
 0.2316
-0.3242
-0.0219
-0.2645
 0.0576
-0.2465
 0.0481
-0.3530
 0.0950
-0.1862
-0.1707
-0.0161
-0.2604
-0.3145
-0.1083
 0.0659
-0.1427
-0.0570
-0.0076
-0.3006
-0.0744
-0.0683
-0.1104
 0.0253
 0.0489
-0.2515
 0.1150
-0.3783
 0.0846
-0.0368
 0.1439
-0.0468
-0.3087
-0.0240
 0.1397
-0.0908
-0.1795
-0.1129
-0.0793
-0.1491
 0.0594
-0.4433
-0.0138
[torch.FloatTensor of size 64]
), ('layer1.1.bn1.running_mean', 
-0.6534
 0.9240
-1.3403
-0.7395
-0.5830
-1.6717
-0.3376
 0.1913
-0.4565
-0.7877
-0.3756
-0.2295
-1.7003
-0.6135
 0.5422
-0.1072
-0.2315
-0.3775
-1.8026
-0.7210
-0.0288
-1.2585
-1.8144
 0.0504
-0.0739
-1.5506
-1.5092
-1.0623
 0.1706
 0.1527
 0.3983
-2.9065
-0.9070
-0.2983
-1.8404
-2.3956
 0.2241
-0.0760
-0.9525
-1.4632
 0.7657
-0.3832
 0.8590
-1.3211
-1.2599
-0.1220
-0.2230
 0.5071
 1.0262
-0.5969
-0.0104
-1.4013
-0.4267
-0.9979
-1.9458
 0.1991
-0.8841
-0.8302
-0.3076
-2.0759
-1.2645
 0.2679
 0.4349
-1.2568
[torch.FloatTensor of size 64]
), ('layer1.1.bn1.running_var', 
 0.7111
 0.5543
 0.6143
 0.5148
 0.2840
 0.4924
 0.3536
 0.3939
 0.2511
 0.4859
 0.1803
 0.7468
 0.4225
 0.3686
 0.1719
 0.2777
 0.3676
 0.2311
 0.3515
 0.4917
 0.1393
 0.1732
 0.6248
 0.3038
 0.1599
 0.5246
 0.2410
 0.5096
 0.5251
 0.5369
 0.1800
 1.0623
 0.4006
 0.2060
 0.5194
 0.4981
 0.4250
 0.2616
 0.8252
 0.4991
 0.3290
 0.3642
 0.2716
 0.6520
 0.4492
 0.2753
 0.3377
 0.3167
 0.3830
 0.4624
 0.4098
 0.5566
 0.5048
 0.4747
 0.6820
 0.4387
 0.3506
 0.2995
 0.5595
 0.6855
 0.5260
 0.6478
 0.4960
 0.5449
[torch.FloatTensor of size 64]
), ('layer1.1.conv2.weight', 
(0 ,0 ,.,.) = 
 -2.1574e-02 -4.5688e-03  4.5483e-03
 -8.1870e-03  4.1740e-02  2.3010e-02
 -8.9283e-03  5.7352e-02  2.9818e-02

(0 ,1 ,.,.) = 
  5.8627e-02  4.2864e-02  4.4912e-02
  2.2281e-02 -1.2969e-02  7.6099e-03
  4.5373e-02  3.0712e-02  3.7700e-02

(0 ,2 ,.,.) = 
 -1.5456e-02 -3.8692e-02 -4.6010e-02
 -2.3123e-02  2.8293e-02  4.7790e-03
 -2.0328e-02  1.3756e-02  2.5883e-02
   ...

(0 ,61,.,.) = 
  5.1302e-02  4.2291e-02  5.7833e-02
  4.5210e-02  5.5850e-02  1.4318e-02
  1.4241e-02  1.7968e-02  1.4344e-02

(0 ,62,.,.) = 
  4.6012e-03  1.2566e-02  4.8931e-02
 -6.5754e-03 -2.6431e-02  1.5855e-02
  1.3192e-02  1.9011e-02  1.3842e-02

(0 ,63,.,.) = 
  6.1983e-02  6.9919e-02  6.1035e-02
  6.1253e-02  9.9557e-02  5.9060e-02
  5.8298e-02  8.1652e-02  8.1499e-02
     ⋮ 

(1 ,0 ,.,.) = 
 -1.0088e-02 -1.2959e-02  9.7798e-03
  5.5408e-02  4.3501e-02  5.6983e-02
  5.3427e-02  3.5118e-02  3.6782e-02

(1 ,1 ,.,.) = 
  2.4442e-03 -3.0207e-02 -1.0377e-02
 -4.5297e-02 -4.5318e-02  5.4623e-03
 -4.4762e-02 -1.5508e-02  6.9745e-03

(1 ,2 ,.,.) = 
  3.9658e-02  3.6838e-02  5.8796e-03
  2.3207e-02  3.9240e-03 -2.0887e-02
 -1.4829e-02  5.3606e-03  1.7404e-03
   ...

(1 ,61,.,.) = 
  3.2160e-02  5.9042e-02  4.8433e-02
 -2.6464e-02 -8.0667e-03 -1.0359e-02
 -2.6699e-02 -9.5411e-03 -2.8902e-02

(1 ,62,.,.) = 
 -2.9235e-02 -3.9078e-02 -4.4955e-02
 -2.0346e-02 -4.4891e-02 -3.7477e-02
  1.9653e-02 -1.5562e-03 -5.8245e-03

(1 ,63,.,.) = 
 -5.0696e-02 -4.8902e-02  9.1631e-03
  5.1668e-03  2.0509e-02  6.6874e-02
  2.8934e-02  4.6717e-02  2.1371e-02
     ⋮ 

(2 ,0 ,.,.) = 
  2.1744e-02 -2.8354e-02 -3.2557e-02
  3.0519e-02  1.8536e-02  1.5244e-02
  1.3832e-03  1.7051e-02  3.2020e-02

(2 ,1 ,.,.) = 
 -3.6293e-02  1.0914e-02  4.5371e-02
  1.3399e-02  6.4272e-02  8.8210e-02
  4.6697e-02  9.9653e-02  8.7606e-02

(2 ,2 ,.,.) = 
 -2.4336e-02 -2.9627e-02  1.9537e-02
 -3.3412e-02 -2.2290e-02 -2.8879e-02
  1.4765e-02  1.7234e-02 -1.8185e-02
   ...

(2 ,61,.,.) = 
 -3.9859e-02 -7.1075e-02 -5.8546e-02
  2.2902e-02  1.1184e-02 -2.3654e-02
  8.1897e-02  1.1996e-01  9.3242e-02

(2 ,62,.,.) = 
  3.1984e-02  7.4931e-02  6.6020e-02
  2.8490e-02  1.1931e-01  1.2100e-01
  7.9259e-04  4.3812e-02  4.4648e-02

(2 ,63,.,.) = 
  3.2748e-02  4.1444e-02 -8.1932e-03
  4.5541e-02  2.9426e-02 -8.5440e-03
  1.1634e-04  1.8045e-03  1.4826e-02
...   
     ⋮ 

(61,0 ,.,.) = 
 -4.4144e-02 -8.3106e-02 -5.3073e-02
  3.2124e-02  1.0286e-02  2.4409e-02
  6.1606e-03 -1.9455e-02  4.0534e-02

(61,1 ,.,.) = 
  5.6026e-04  9.6961e-03  2.5010e-03
  7.1679e-03 -1.7535e-02 -2.3857e-02
 -9.8745e-03 -1.8550e-02  1.7301e-03

(61,2 ,.,.) = 
  4.3882e-03  4.2049e-02  7.5950e-02
 -6.5610e-02 -3.6130e-02 -1.9404e-02
 -3.8091e-02 -2.6749e-02 -1.3865e-02
   ...

(61,61,.,.) = 
 -4.5593e-02 -4.6050e-02 -2.2809e-02
 -9.7648e-03  2.4910e-03  2.4503e-02
  2.0381e-02  5.2393e-02  6.9019e-02

(61,62,.,.) = 
  9.3306e-04  1.2483e-02 -1.1817e-02
 -1.2627e-02 -1.8756e-02 -1.4144e-03
 -5.2490e-03 -4.6126e-03 -1.3224e-02

(61,63,.,.) = 
  7.4689e-04 -1.0135e-02 -7.8264e-03
  1.2491e-02 -2.5865e-02  4.0514e-02
  5.8855e-03  4.5990e-02  1.0651e-01
     ⋮ 

(62,0 ,.,.) = 
  1.2262e-02 -1.5378e-02  1.3862e-03
  4.1166e-02 -2.4944e-02 -2.6686e-02
 -1.7423e-02  5.2690e-03 -2.1861e-02

(62,1 ,.,.) = 
 -3.1207e-02 -3.3025e-02  2.2114e-02
 -2.4009e-02  1.2988e-02  2.2430e-02
  1.0332e-02  4.3601e-03  4.7321e-03

(62,2 ,.,.) = 
  2.0182e-02  6.1569e-02 -2.8771e-02
  5.8231e-02  4.6767e-02 -2.8417e-05
  3.7545e-02 -4.5886e-02  1.5849e-02
   ...

(62,61,.,.) = 
  7.0431e-03 -3.6082e-03  7.1986e-03
  2.4895e-02  6.1671e-03 -3.2427e-02
  7.2338e-03  2.2406e-03 -5.3330e-02

(62,62,.,.) = 
  2.8072e-02 -1.0571e-02 -1.3854e-02
 -1.0879e-02  6.1929e-03 -5.6713e-03
 -2.6083e-02  8.1861e-03 -3.2873e-02

(62,63,.,.) = 
 -3.1032e-02 -6.0485e-02 -2.5583e-02
 -4.6239e-02 -2.2805e-02 -7.7678e-03
 -9.4698e-03  4.0247e-03 -4.8637e-03
     ⋮ 

(63,0 ,.,.) = 
  2.3128e-02 -5.6038e-02 -3.4572e-02
  1.0638e-03  5.7929e-02 -7.6970e-03
 -3.0103e-02  3.5573e-02 -1.8143e-02

(63,1 ,.,.) = 
  9.6840e-02 -1.1186e-01 -7.8766e-02
 -1.0444e-01 -1.0851e-01 -1.9553e-01
 -1.1986e-01 -7.1474e-02  3.6750e-02

(63,2 ,.,.) = 
 -2.2194e-02  6.0298e-03  5.6914e-02
 -4.8342e-02  7.8893e-02 -5.1026e-02
 -5.1294e-02 -5.7434e-02 -1.9178e-02
   ...

(63,61,.,.) = 
 -4.4896e-02 -8.1267e-02  5.1794e-02
 -8.3985e-02 -5.7778e-02  6.7891e-02
  2.3837e-02  3.8954e-02  4.1141e-02

(63,62,.,.) = 
  4.6446e-03  2.7367e-02 -2.3154e-02
  2.0675e-02  2.3429e-02  6.4380e-04
 -5.2222e-02 -1.4854e-02 -2.5150e-02

(63,63,.,.) = 
  2.1291e-02  1.2736e-02  8.4553e-03
 -8.2932e-02  7.2067e-02  1.3107e-01
  8.5491e-03  1.3677e-01  3.9867e-02
[torch.FloatTensor of size 64x64x3x3]
), ('layer1.1.bn2.weight', 
 0.2560
 0.5690
 0.4042
 0.5130
 0.2178
 0.4940
 0.3315
 0.5510
 0.4354
 0.5291
 0.2081
 0.4735
 0.5945
 0.5645
 0.2761
 0.2571
 0.4853
 0.6240
 0.4370
 0.2308
 0.4970
 0.3157
 0.5706
 0.2162
 0.1932
 0.1448
 0.2218
 0.2389
 0.5871
 0.3501
 0.4109
 0.3199
 0.5808
 0.3281
 0.2723
 0.1971
 0.6139
 0.4075
 0.6304
 0.3874
 0.7605
 0.2111
 0.3071
 0.4603
 0.3099
 0.1914
 0.4431
 0.2537
 0.5745
 0.6459
 0.3914
 0.3090
 0.6782
 0.1937
 0.5814
 0.2570
 0.3514
 0.2124
 0.5794
 0.3415
 0.2051
 0.0715
 0.4090
 0.4416
[torch.FloatTensor of size 64]
), ('layer1.1.bn2.bias', 
-0.1778
-0.1287
 0.0349
-0.1452
 0.1864
-0.1413
-0.4201
-0.1334
 0.2183
-0.1912
 0.0311
-0.0235
-0.1724
-0.0274
-0.0295
-0.1031
 0.0047
 0.0828
-0.1521
 0.0183
-0.2418
-0.0831
-0.0491
-0.0688
-0.2560
 0.1381
-0.0165
 0.2092
-0.0028
-0.0265
-0.0225
 0.0286
-0.1065
-0.3698
 0.2862
-0.1036
 0.3080
-0.0894
 0.2772
 0.1136
-0.3157
 0.0423
 0.0567
 0.2369
-0.0727
 0.0465
-0.0536
 0.1309
 0.0282
-0.1371
 0.1464
-0.0717
-0.3237
-0.1583
-0.0424
-0.1278
-0.1703
 0.0413
 0.0891
 0.0770
-0.0730
 0.0683
-0.0391
 0.0476
[torch.FloatTensor of size 64]
), ('layer1.1.bn2.running_mean', 
-0.0555
-0.2037
 0.7682
-0.0659
 0.4746
-0.0462
-0.0896
 0.0405
-0.2446
-0.3079
 0.2418
-0.0135
-0.0139
-0.5716
 0.1631
-0.1234
-0.0607
-0.0682
 0.0326
 0.0245
-0.1008
 0.0646
 0.0028
-0.0101
-0.0145
 0.0377
-0.0842
 0.0183
-0.5056
-0.0529
-0.0573
-0.1212
-0.3578
-0.2472
-0.3403
 0.0570
-0.2512
-0.2658
-0.1210
-0.0369
-0.0996
 0.2838
 0.1478
-0.1105
-0.4597
-0.1867
-0.2858
 0.1237
-0.1291
-0.2389
 0.0203
 0.1081
-0.2310
-0.0848
-0.0316
 0.2546
 0.0597
-0.1729
-0.0190
 0.1898
 0.0823
 0.0380
-0.0429
 0.1392
[torch.FloatTensor of size 64]
), ('layer1.1.bn2.running_var', 
 0.0485
 0.1034
 0.0663
 0.0458
 0.1147
 0.0534
 0.0654
 0.0467
 0.0442
 0.0820
 0.0332
 0.0400
 0.0379
 0.0849
 0.0409
 0.0282
 0.0821
 0.0699
 0.0327
 0.0497
 0.0506
 0.1060
 0.0921
 0.0300
 0.0170
 0.0383
 0.0358
 0.0383
 0.0745
 0.0579
 0.0390
 0.0504
 0.0494
 0.0617
 0.0458
 0.0347
 0.0525
 0.0575
 0.0475
 0.0354
 0.0658
 0.0336
 0.0437
 0.0734
 0.0574
 0.0596
 0.0452
 0.0403
 0.0789
 0.0551
 0.0328
 0.0775
 0.0722
 0.0390
 0.0501
 0.0394
 0.0454
 0.0450
 0.0899
 0.0297
 0.0527
 0.0184
 0.0526
 0.0340
[torch.FloatTensor of size 64]
), ('layer2.0.conv1.weight', 
( 0 , 0 ,.,.) = 
 -7.1555e-02 -1.1031e-01 -1.3711e-01
  7.0593e-02 -1.4782e-02 -1.0053e-01
  1.1938e-01  8.7330e-02 -8.2206e-03

( 0 , 1 ,.,.) = 
 -2.3999e-02 -6.3682e-03  2.4303e-03
  6.1831e-03  1.8781e-02  2.5324e-02
  2.3656e-03 -4.0037e-03 -1.1949e-02

( 0 , 2 ,.,.) = 
  6.0344e-03  6.3784e-03 -1.2247e-02
  7.8854e-03 -1.3464e-02 -4.2702e-02
  1.7380e-02 -1.3862e-02 -4.7145e-02
    ... 

( 0 ,61 ,.,.) = 
  3.4324e-02  3.2257e-02  2.5819e-02
  8.4676e-03 -4.5413e-04 -1.0832e-02
 -6.7166e-03 -1.5052e-02 -2.6939e-02

( 0 ,62 ,.,.) = 
 -1.2089e-02 -2.3588e-02 -2.2689e-02
  1.0135e-02  1.8285e-02 -1.5695e-02
  2.1352e-02  5.8568e-02  4.2873e-02

( 0 ,63 ,.,.) = 
  1.4421e-02 -2.8298e-02 -7.0770e-03
  3.0260e-02 -6.6294e-03 -1.6901e-02
  3.9085e-02  1.4222e-02  2.2294e-02
      ⋮  

( 1 , 0 ,.,.) = 
 -7.7911e-02 -7.3929e-02 -3.6671e-02
 -3.4903e-02 -6.2355e-02 -3.7793e-02
 -2.8379e-02 -5.4291e-02 -4.9411e-02

( 1 , 1 ,.,.) = 
 -1.2970e-02 -2.1825e-02 -2.8767e-04
  7.6444e-03  1.7653e-02  1.6660e-02
  3.8337e-02  2.3006e-02 -1.6620e-03

( 1 , 2 ,.,.) = 
 -8.7592e-02 -8.4735e-02 -5.5818e-02
 -7.7731e-02 -8.0311e-02 -3.2554e-02
 -5.6313e-02 -4.2047e-02  1.5247e-02
    ... 

( 1 ,61 ,.,.) = 
 -3.2377e-02 -4.0018e-02 -2.9523e-02
 -1.5294e-02 -1.4165e-02  2.7086e-03
  1.1652e-02  2.3886e-02  2.4413e-02

( 1 ,62 ,.,.) = 
  2.0891e-03 -3.0475e-02 -3.3818e-02
  6.7829e-03  3.8681e-04 -1.4540e-02
 -3.1306e-03  6.7689e-03  8.4524e-03

( 1 ,63 ,.,.) = 
  3.0586e-02  4.6281e-02  3.8359e-04
  5.3079e-02  6.7488e-02  3.0547e-02
  2.3374e-02  4.3993e-02 -3.8713e-03
      ⋮  

( 2 , 0 ,.,.) = 
  1.3878e-02  3.2724e-02  4.6584e-02
 -8.0647e-03  1.6209e-03  1.5153e-02
 -7.0342e-02 -5.3299e-02 -4.5920e-02

( 2 , 1 ,.,.) = 
  4.6035e-02  3.5400e-02  3.4941e-02
  5.8351e-02  5.4640e-02  2.7162e-02
  2.6799e-02  4.5056e-02  6.6886e-03

( 2 , 2 ,.,.) = 
 -3.3766e-02 -3.8605e-02 -2.4172e-02
 -1.8285e-03  1.0888e-02  1.1425e-02
  2.2282e-02  1.4024e-02  3.6332e-03
    ... 

( 2 ,61 ,.,.) = 
 -1.6330e-02 -6.9552e-02 -8.9737e-02
  3.9766e-02  1.5501e-02 -2.2695e-02
  1.0290e-01  1.2294e-01  6.3867e-02

( 2 ,62 ,.,.) = 
 -4.2318e-03  4.9511e-02 -7.6289e-03
 -2.7720e-02  7.0398e-03 -9.4052e-03
 -6.7008e-02 -6.0542e-02 -2.5967e-02

( 2 ,63 ,.,.) = 
 -5.8560e-03 -1.7573e-02 -3.8016e-02
  2.8579e-03 -4.1603e-03  1.0113e-02
  2.6243e-02  3.5200e-02  3.1143e-02
...     
      ⋮  

(125, 0 ,.,.) = 
 -4.4193e-02 -6.5322e-02 -1.7594e-02
 -9.3970e-02 -5.8291e-02  1.2093e-02
 -2.2998e-02  3.2463e-02  7.1731e-02

(125, 1 ,.,.) = 
 -4.7220e-03 -3.0125e-03 -1.8075e-02
  1.2667e-02 -8.0509e-03 -1.4605e-02
  7.8220e-03 -1.0720e-02 -2.6515e-02

(125, 2 ,.,.) = 
 -2.5299e-02 -4.9383e-02 -1.2720e-02
 -5.2206e-02 -4.7233e-02 -4.2470e-03
 -4.8697e-02 -2.5320e-02  8.6178e-03
    ... 

(125,61 ,.,.) = 
 -3.7617e-03  7.8398e-03 -5.9525e-03
  4.0277e-03  7.3575e-03 -1.1667e-02
 -3.9997e-02 -3.8038e-02 -5.0469e-02

(125,62 ,.,.) = 
 -3.8949e-03 -6.8965e-03  3.4102e-02
 -6.9814e-03 -4.9762e-02  5.8711e-02
  1.8361e-02  2.5874e-02  8.0028e-02

(125,63 ,.,.) = 
 -3.3014e-02 -2.1510e-02 -2.1509e-03
 -4.3894e-02 -3.2009e-02 -1.6265e-02
 -1.1037e-02  2.8872e-04  3.0937e-02
      ⋮  

(126, 0 ,.,.) = 
 -4.9907e-02 -5.0222e-02 -5.0985e-02
  2.2644e-02 -1.4098e-02 -2.4426e-02
  1.9960e-02  9.6426e-02  1.0580e-01

(126, 1 ,.,.) = 
 -3.6873e-02  2.1413e-03  8.3469e-03
 -4.0796e-02 -3.3767e-02 -3.4955e-02
  3.9466e-02  7.0508e-02  8.6065e-02

(126, 2 ,.,.) = 
  1.4842e-02  6.6914e-03  1.4324e-02
 -3.2621e-02 -4.4027e-02 -2.2269e-02
  7.1982e-03 -1.9187e-02 -4.9348e-03
    ... 

(126,61 ,.,.) = 
 -4.9938e-03  1.6018e-02  1.1242e-02
 -4.7668e-03  2.1921e-02  2.2660e-02
 -2.6753e-02  2.6917e-04 -5.6827e-03

(126,62 ,.,.) = 
 -8.7725e-03  1.0761e-02  7.3603e-03
 -1.8010e-05 -1.7926e-02  4.8229e-03
  4.2431e-02 -1.5764e-02  2.3554e-02

(126,63 ,.,.) = 
 -1.3830e-02 -3.0793e-03 -4.0854e-03
  3.3363e-02  4.2952e-02  3.5867e-02
 -3.9653e-02 -3.0855e-02 -4.3189e-02
      ⋮  

(127, 0 ,.,.) = 
 -3.8617e-02 -3.1549e-03  2.5739e-03
 -1.1592e-02  9.8761e-03  7.5235e-03
 -1.9339e-02 -9.8779e-03  2.1755e-03

(127, 1 ,.,.) = 
  1.6889e-04  1.8302e-03 -8.9537e-03
  5.8343e-03  1.7360e-02 -1.9029e-02
  5.8642e-03 -7.4307e-04  1.4667e-03

(127, 2 ,.,.) = 
 -1.6506e-02 -2.8401e-02  1.3986e-02
 -2.2922e-02 -4.3484e-02  1.0471e-02
 -2.5801e-03 -4.5258e-02  7.9791e-03
    ... 

(127,61 ,.,.) = 
 -1.5260e-03 -7.6469e-03  1.3597e-02
  5.5301e-04 -2.9176e-03  2.2147e-02
  3.2763e-03 -1.0775e-05  1.3163e-02

(127,62 ,.,.) = 
  5.1756e-03  1.8495e-02 -8.0268e-03
 -3.5030e-02  2.6403e-02 -7.1220e-03
 -5.2325e-02 -1.1185e-02  1.9146e-02

(127,63 ,.,.) = 
 -6.8805e-02  5.1618e-02  1.9787e-02
  2.5533e-02 -6.1926e-02  4.9924e-02
  1.0532e-01 -4.4136e-02  4.9907e-02
[torch.FloatTensor of size 128x64x3x3]
), ('layer2.0.bn1.weight', 
 0.3248
 0.3613
 0.2960
 0.2913
 0.3407
 0.3435
 0.3049
 0.3308
 0.3447
 0.3860
 0.3196
 0.2622
 0.2994
 0.2189
 0.2397
 0.3744
 0.3555
 0.1948
 0.3349
 0.2159
 0.3349
 0.3454
 0.3094
 0.3769
 0.3546
 0.3267
 0.3178
 0.3272
 0.3832
 0.2585
 0.2973
 0.3481
 0.2827
 0.2995
 0.3451
 0.3471
 0.3440
 0.3344
 0.3211
 0.3180
 0.2940
 0.3353
 0.3253
 0.3733
 0.3198
 0.2987
 0.1620
 0.3262
 0.3271
 0.3410
 0.3693
 0.3320
 0.3357
 0.2951
 0.3115
 0.3185
 0.3139
 0.2633
 0.3089
 0.3601
 0.2734
 0.3433
 0.3335
 0.3288
 0.2706
 0.2879
 0.3318
 0.3310
 0.3170
 0.2977
 0.3300
 0.3216
 0.3205
 0.3231
 0.3481
 0.3130
 0.2826
 0.2856
 0.3279
 0.3666
 0.3288
 0.3575
 0.3377
 0.2904
 0.3273
 0.3214
 0.3332
 0.3452
 0.1842
 0.3916
 0.3337
 0.2325
 0.3285
 0.3358
 0.2885
 0.3149
 0.3288
 0.2236
 0.3159
 0.2993
 0.3403
 0.3220
 0.3171
 0.2950
 0.2847
 0.3224
 0.3119
 0.2613
 0.3374
 0.3333
 0.3330
 0.2959
 0.4087
 0.2192
 0.2982
 0.4006
 0.3081
 0.3171
 0.2862
 0.2952
 0.3070
 0.3583
 0.3232
 0.3345
 0.3453
 0.3043
 0.3327
 0.3337
[torch.FloatTensor of size 128]
), ('layer2.0.bn1.bias', 
-0.0589
-0.1686
-0.0206
 0.0027
-0.0955
-0.1048
 0.0349
-0.0885
-0.2053
-0.1764
-0.1224
-0.0364
-0.0785
 0.2088
-0.0403
-0.1820
-0.1076
 0.2989
-0.0570
 0.2064
-0.0921
-0.1376
-0.1304
-0.1193
-0.1006
-0.0380
-0.1108
-0.0477
-0.1087
 0.1581
-0.1123
-0.1584
 0.0976
-0.0430
-0.1349
-0.1189
-0.0986
-0.0479
-0.0837
-0.0720
-0.0836
-0.2442
-0.3376
-0.2124
-0.0693
-0.0651
 0.4979
-0.0811
-0.1021
-0.0788
-0.1802
-0.1011
-0.1090
-0.0617
-0.0856
-0.0495
-0.0370
 0.0023
-0.0508
-0.2430
 0.0009
-0.1525
-0.0963
-0.0516
-0.0473
 0.0884
-0.1028
-0.0907
-0.1086
-0.0379
-0.1030
-0.1609
-0.0903
-0.0898
-0.1282
-0.0830
-0.0186
-0.0232
-0.0045
-0.2131
-0.1431
-0.1391
-0.1303
-0.0568
-0.1862
-0.1209
-0.0340
-0.1181
 0.2298
-0.2085
-0.1335
 0.1418
-0.0891
-0.1273
 0.0107
-0.1029
-0.1025
 0.1562
-0.0937
-0.0657
-0.1245
-0.0451
-0.0707
-0.0447
 0.0715
-0.0484
-0.0312
-0.0437
-0.0927
-0.1465
-0.1151
-0.0183
-0.1927
 0.2491
 0.0300
-0.1310
-0.0468
-0.0851
-0.0421
-0.0413
-0.0457
-0.1433
-0.0981
-0.1046
-0.1315
-0.1249
-0.0982
-0.0961
[torch.FloatTensor of size 128]
), ('layer2.0.bn1.running_mean', 
 0.1502
 0.3009
-0.1475
-0.1210
-0.5701
-0.7525
 0.0232
-0.1191
-0.5203
-0.0344
 0.1527
-0.8009
-0.2133
-0.1956
-0.4503
-0.2632
 0.0839
-1.3614
 0.3520
 0.0435
-0.5124
-0.4489
 0.3674
-0.7865
-0.0061
-0.5502
-0.2629
-0.0697
-0.3892
 0.8596
-0.0261
 0.0194
-1.4822
 0.2077
 0.0741
-0.5370
 0.6348
 0.0066
-0.6156
-0.6373
-0.2649
 0.3021
-0.6140
-0.8625
-1.1688
-0.2691
-0.7569
-0.7104
-0.5601
-0.3803
-0.6424
-0.5653
-0.3943
-0.8532
-0.8817
-0.5444
-0.2364
-0.2572
-0.0131
-1.1256
 0.2372
-0.2265
-0.1682
-0.7450
-0.8640
 0.2118
 0.1918
 0.5058
 0.0755
-0.6975
-0.7518
 0.5799
-0.2933
-0.0071
-0.6256
-0.2616
-0.6733
-1.1375
 0.1193
-0.4987
-0.6461
-0.0576
 0.0361
 0.0026
-1.1884
 0.2901
-0.7978
-0.2888
 0.7106
-0.6718
-0.3914
 0.3720
-0.4927
-0.5238
-0.0162
-0.5074
-0.3267
-1.2319
-0.1927
-0.1273
 0.3230
-0.0156
-0.1317
-0.6099
-0.0179
-0.3003
-0.1247
 0.1452
-0.4937
-0.4852
-0.3357
-0.3261
-0.3776
-0.3691
-0.6458
-0.3323
-0.0424
-0.2551
-0.6557
-0.2917
 0.5345
-0.4286
 0.1585
-0.3547
-0.1262
-1.0521
-0.2490
-0.2917
[torch.FloatTensor of size 128]
), ('layer2.0.bn1.running_var', 
 0.5933
 0.5225
 0.9587
 1.2984
 0.6954
 0.5495
 0.7123
 0.7396
 0.4001
 0.5929
 0.4880
 0.6532
 0.5901
 0.5786
 0.5031
 0.6984
 0.6699
 0.3613
 0.6258
 0.5226
 0.6306
 0.6908
 0.4390
 0.7955
 0.8504
 0.8891
 0.4963
 0.7665
 0.9027
 0.6111
 0.4632
 0.4609
 0.8053
 0.4621
 0.5438
 0.6401
 0.6203
 0.6133
 0.6070
 0.6558
 0.5315
 0.2684
 0.1446
 0.5651
 0.7784
 0.6977
 0.4379
 0.6246
 0.7749
 0.7301
 0.5099
 0.6298
 0.5608
 0.7794
 0.6851
 0.6257
 1.0322
 0.7427
 0.9320
 0.3659
 0.7492
 0.5316
 0.6421
 1.2247
 0.6555
 0.7807
 0.7130
 0.5728
 0.4848
 0.6181
 0.6428
 0.5033
 0.6044
 0.6865
 0.6463
 0.6181
 0.5878
 0.6709
 0.8211
 0.5813
 0.6612
 0.6009
 0.6994
 0.5487
 0.3528
 0.4863
 0.7886
 0.6114
 0.3858
 0.6698
 0.4507
 0.7751
 0.5016
 0.5925
 1.1193
 0.7031
 0.5847
 0.4395
 0.6343
 0.5480
 0.6623
 0.7094
 0.5908
 0.8719
 1.1220
 0.7039
 0.6290
 0.4964
 0.7137
 0.6734
 0.4282
 0.7129
 0.5942
 0.7962
 0.6300
 0.9883
 0.6343
 0.7726
 0.6982
 0.6926
 0.6692
 0.7207
 0.4516
 0.6805
 0.5262
 0.4744
 0.7139
 0.6144
[torch.FloatTensor of size 128]
), ('layer2.0.conv2.weight', 
( 0 , 0 ,.,.) = 
 -7.4379e-03 -9.8091e-03  2.7976e-03
 -1.0780e-02  2.5794e-02  4.5517e-02
 -2.7241e-02  5.3206e-03  1.3177e-02

( 0 , 1 ,.,.) = 
  3.5440e-02  2.5101e-02  7.8204e-03
  4.0312e-03  1.9894e-02  2.7449e-02
  3.5329e-02  3.5456e-02  1.3315e-02

( 0 , 2 ,.,.) = 
  1.9270e-02 -2.1333e-02 -3.6199e-02
 -1.9590e-02 -1.8873e-02 -5.9538e-02
 -2.1838e-02 -7.6875e-03  3.9487e-03
    ... 

( 0 ,125,.,.) = 
 -6.8038e-03  1.0841e-02 -3.7045e-03
  1.3479e-02  1.1362e-02 -1.3431e-03
  8.1422e-03  1.9292e-04  5.5109e-04

( 0 ,126,.,.) = 
  7.6939e-03  7.7306e-03  4.3960e-03
 -1.0202e-02 -1.1698e-02 -9.6343e-03
 -3.9049e-03  1.8147e-02  1.3297e-02

( 0 ,127,.,.) = 
  1.2434e-02 -2.6889e-02 -1.1974e-02
  2.6846e-02  2.6409e-02 -2.1473e-02
  1.2892e-02  2.7632e-03 -5.4267e-03
      ⋮  

( 1 , 0 ,.,.) = 
  1.2840e-02  1.8529e-02 -2.6782e-03
 -1.6777e-02 -1.2281e-02  3.5471e-02
 -8.6486e-04  2.4498e-02  1.8152e-02

( 1 , 1 ,.,.) = 
 -6.6870e-03 -2.0710e-02 -1.4421e-02
 -7.3135e-03  4.2568e-02  7.4339e-03
  2.7640e-02  1.5997e-02  1.5939e-02

( 1 , 2 ,.,.) = 
 -2.2903e-02 -2.0577e-02  2.3593e-02
 -2.7524e-02 -5.6073e-02 -6.9899e-02
  2.0502e-02  5.1301e-02  2.1989e-02
    ... 

( 1 ,125,.,.) = 
 -2.7188e-02 -3.8969e-02 -3.9503e-02
 -6.2117e-02 -7.4923e-02 -9.5650e-02
 -6.0467e-02 -7.7697e-02 -7.4620e-02

( 1 ,126,.,.) = 
  2.8663e-02  2.9341e-02  2.8688e-02
  7.9438e-03  4.7108e-02  1.4586e-02
 -1.8200e-03  2.2035e-02  7.3670e-03

( 1 ,127,.,.) = 
  1.5625e-03 -1.6815e-02 -4.6104e-03
 -8.1347e-03 -2.5480e-02 -5.2408e-02
 -9.2823e-03 -9.6452e-04 -3.7804e-02
      ⋮  

( 2 , 0 ,.,.) = 
  4.7439e-03  6.0541e-03 -7.1074e-03
  2.3583e-02 -9.3094e-02 -7.9317e-02
 -7.8970e-03 -5.0526e-02 -1.0469e-02

( 2 , 1 ,.,.) = 
  1.4810e-02  1.6199e-02 -5.1457e-02
  8.5937e-03  8.1354e-03 -4.2865e-02
  9.0780e-02  6.5382e-02  4.3530e-02

( 2 , 2 ,.,.) = 
 -1.3827e-02 -6.3971e-03  8.4965e-03
  1.3832e-02 -1.2413e-02  5.3880e-03
  2.0189e-02 -3.5255e-03  7.9905e-03
    ... 

( 2 ,125,.,.) = 
 -9.2351e-04  1.8478e-02 -3.0603e-02
 -1.7034e-02  5.6756e-03 -4.9061e-02
 -3.2771e-02 -3.7422e-02 -4.5931e-02

( 2 ,126,.,.) = 
 -4.6355e-03  6.9231e-03 -1.0628e-03
 -7.9292e-03 -4.9909e-02  4.2104e-02
 -7.5158e-02 -4.7826e-03 -5.8031e-03

( 2 ,127,.,.) = 
  1.1503e-02 -1.4634e-02  3.7884e-02
  1.4056e-02  4.8553e-02  2.3157e-02
  2.1494e-02 -1.0090e-02  3.3782e-02
...     
      ⋮  

(125, 0 ,.,.) = 
  2.6448e-02  4.0213e-03  7.5348e-03
  6.3626e-02 -3.1986e-02 -1.8433e-03
  2.6220e-02  7.5575e-03  4.9462e-02

(125, 1 ,.,.) = 
 -2.8731e-02 -2.2669e-02 -5.1264e-02
 -2.6000e-02 -4.8740e-02 -1.4003e-02
 -1.7263e-02 -4.1574e-02 -1.1665e-02

(125, 2 ,.,.) = 
 -3.4972e-02  3.5634e-02  3.4700e-02
  1.8265e-02  4.3594e-02 -2.6302e-02
  1.7826e-02  3.5585e-02  1.1340e-02
    ... 

(125,125,.,.) = 
  9.7429e-03 -1.7253e-02 -1.6983e-04
 -1.9886e-02  8.1994e-02  1.2903e-02
 -2.3786e-02 -4.7812e-03  4.8584e-02

(125,126,.,.) = 
 -2.4373e-02 -2.5836e-02 -3.5317e-02
 -2.9582e-02 -9.6624e-02 -5.3546e-02
 -1.5009e-02  5.9241e-03 -1.9719e-02

(125,127,.,.) = 
  6.8366e-03 -3.6779e-02 -2.5541e-02
 -1.1634e-02 -2.3650e-02 -7.8005e-03
  8.6452e-03  7.8958e-03 -1.8926e-02
      ⋮  

(126, 0 ,.,.) = 
  3.2894e-02  2.9690e-02  1.1071e-02
  3.8989e-02 -8.9897e-03  2.2632e-02
  7.8374e-03 -2.7959e-02 -2.3005e-02

(126, 1 ,.,.) = 
  1.3667e-02  2.2886e-02 -1.8989e-02
  2.7104e-03  1.1235e-02  7.4223e-03
  2.1089e-02  4.3557e-02  1.0752e-02

(126, 2 ,.,.) = 
 -2.3662e-02  2.2110e-02  4.3471e-04
 -3.0925e-02  6.0868e-02  1.6691e-02
 -8.8467e-02 -8.3442e-02 -3.4247e-02
    ... 

(126,125,.,.) = 
 -7.3418e-03 -1.9690e-02  1.7969e-03
  7.2727e-03 -3.4322e-02 -2.4270e-02
 -1.1512e-02 -6.0470e-02 -5.5070e-02

(126,126,.,.) = 
  3.0219e-03  2.6285e-03  1.7110e-02
 -1.3418e-02 -8.5859e-03  9.0284e-03
  1.9504e-02  9.4355e-03  4.5180e-03

(126,127,.,.) = 
  1.3674e-03  7.6213e-04  1.1925e-02
 -2.3910e-03 -1.0733e-02  1.2625e-02
 -5.0613e-03 -5.7724e-03 -1.4643e-02
      ⋮  

(127, 0 ,.,.) = 
 -7.4213e-03  1.1754e-02 -4.2728e-02
  1.6309e-03 -4.5691e-02 -1.3976e-01
 -6.5419e-03 -2.0547e-03 -4.8392e-02

(127, 1 ,.,.) = 
  7.5053e-03  5.2659e-02  3.8849e-02
 -1.2484e-02  8.4685e-02  6.2233e-03
  1.3136e-03 -1.9656e-02 -8.2167e-02

(127, 2 ,.,.) = 
 -2.4916e-02  1.6551e-02  1.6914e-02
  8.6507e-03  2.1444e-02  1.1694e-02
 -9.0502e-04  3.0596e-02  1.3600e-02
    ... 

(127,125,.,.) = 
 -7.8114e-03  2.2029e-02 -1.7545e-02
 -7.5889e-03 -2.1149e-02 -3.6984e-03
  1.2622e-02 -2.0709e-02 -5.3862e-03

(127,126,.,.) = 
  3.0152e-02 -8.2268e-03 -6.4910e-02
 -2.3752e-02 -9.5375e-02 -5.3019e-02
 -1.6835e-02 -1.1071e-02  9.9055e-04

(127,127,.,.) = 
 -2.4533e-02 -8.4685e-02  2.5065e-02
  1.0639e-02  3.8693e-02  1.4004e-01
  1.5497e-02 -9.5081e-03  4.0948e-03
[torch.FloatTensor of size 128x128x3x3]
), ('layer2.0.bn2.weight', 
 0.1454
 0.3270
 0.3113
 0.2538
 0.4086
 0.3937
 0.4400
 0.3108
 0.3406
 0.2168
 0.2170
 0.3857
 0.1971
 0.2692
 0.1663
 0.2454
 0.3232
 0.3686
 0.3893
 0.3264
 0.3875
 0.4707
 0.1958
 0.4717
 0.1673
 0.3938
 0.3044
 0.1929
 0.2175
 0.2119
 0.4230
 0.3683
 0.2455
 0.2229
 0.3370
 0.3229
 0.2688
 0.3557
 0.2581
 0.4031
 0.4492
 0.3642
 0.2599
 0.1881
 0.1359
 0.2958
 0.1913
 0.3065
 0.3981
 0.4102
 0.1874
 0.4516
 0.3340
 0.1628
 0.3599
 0.1624
 0.2886
 0.1358
 0.4491
 0.2694
 0.4823
 0.3393
 0.4764
 0.3155
 0.6005
 0.4654
 0.5264
 0.2991
 0.2992
 0.4621
 0.2614
 0.4247
 0.4662
 0.4249
 0.3345
 0.2655
 0.4048
 0.3605
 0.1782
 0.3833
 0.2823
 0.3843
 0.3307
 0.2151
 0.3317
 0.1458
 0.2771
 0.4917
 0.3199
 0.4222
 0.1559
 0.4884
 0.3267
 0.3440
 0.1608
 0.4855
 0.2677
 0.1616
 0.3221
 0.4243
 0.3661
 0.1893
 0.3400
 0.3648
 0.1779
 0.3544
 0.2852
 0.2437
 0.4472
 0.3011
 0.3997
 0.6173
 0.2794
 0.4867
 0.1502
 0.6021
 0.3604
 0.4696
 0.3711
 0.2388
 0.5347
 0.1509
 0.3213
 0.4394
 0.3229
 0.4329
 0.1489
 0.3702
[torch.FloatTensor of size 128]
), ('layer2.0.bn2.bias', 
 0.0246
 0.0593
 0.1347
-0.1089
-0.0470
-0.1359
-0.0550
 0.0509
-0.0613
 0.0916
 0.0031
-0.0274
-0.0539
 0.0177
 0.0432
 0.0074
 0.0548
-0.0321
-0.0224
 0.0142
-0.2150
-0.1160
 0.0486
-0.1141
 0.1066
 0.0355
 0.0140
 0.0177
 0.0781
 0.1331
 0.0139
 0.0447
 0.1063
 0.0528
-0.0539
-0.1160
 0.1055
-0.1591
 0.0100
 0.1197
 0.0170
 0.0929
-0.0675
 0.0987
 0.1034
 0.0501
 0.0297
 0.0281
-0.0075
-0.0577
-0.0144
-0.1640
 0.1255
 0.0817
 0.0635
 0.0936
 0.0213
 0.0486
-0.1174
 0.0237
-0.2177
 0.0099
-0.1883
 0.0467
-0.0829
 0.0585
-0.0306
 0.0509
 0.0541
-0.1671
 0.0115
-0.0302
-0.1393
 0.0115
 0.0428
 0.1189
-0.1289
 0.0479
 0.0474
-0.0625
 0.0009
-0.0144
 0.0909
 0.1342
-0.0338
 0.0560
 0.0848
-0.0467
 0.0228
-0.0097
 0.1360
-0.2625
 0.0088
-0.0553
 0.0383
-0.0720
 0.0907
 0.1612
-0.1076
 0.1011
-0.0519
 0.0838
-0.0704
-0.0806
-0.0243
 0.0533
 0.1277
 0.1403
-0.0593
-0.0639
-0.0766
-0.1163
 0.0661
-0.1644
 0.0422
-0.2786
-0.1006
-0.0696
-0.0761
 0.0371
-0.0247
 0.0916
-0.0200
-0.0176
 0.0298
-0.0373
 0.0466
-0.1371
[torch.FloatTensor of size 128]
), ('layer2.0.bn2.running_mean', 
-0.4532
-0.1524
-0.3771
-0.0713
-0.2878
-0.1534
-0.5443
-0.1878
-0.2956
-0.0365
-0.0336
-0.1475
 0.0068
-0.1377
-0.1417
-0.3703
-0.4644
-0.1248
 0.4767
 0.0385
-0.3257
-0.1539
-0.3181
-0.1037
 0.0639
-0.2066
-0.1608
 0.0557
 0.1252
-0.3812
-0.2301
-0.1256
-0.2842
-0.0949
-0.3629
-0.1013
 0.3173
-0.1264
-0.1660
-0.1444
-0.9475
-1.0992
-0.0125
-0.0690
 0.1497
-0.3284
 0.0886
-0.3466
-0.2630
-0.1583
-0.3092
-0.0368
-0.0169
-0.3435
-0.3742
-0.2488
-0.1078
-0.3069
-0.1010
 0.1655
-0.4201
-0.2702
-0.1342
-0.0495
-0.4643
-0.2271
-0.4530
-0.0365
-0.4531
-0.0485
 0.0403
-0.0798
-0.0885
-0.1399
-0.5255
 0.0254
-0.1210
-0.2685
-0.1447
-0.1114
-0.5782
-0.3445
-0.0098
-0.8503
-0.0380
-0.2450
-0.0705
-0.1167
-0.1946
-0.3769
-0.5091
 0.2355
-0.1791
-0.2465
-0.2035
-0.3560
 0.0100
-0.2061
-0.0407
-0.6231
-0.0431
-0.2874
-0.3627
-0.1486
-0.0271
-0.3714
 0.1313
-0.1827
-0.2294
-0.0660
-0.0431
-0.9597
 0.0849
-0.0855
-0.3286
-0.9559
-0.1640
-0.0745
 0.1040
-0.3808
-0.4664
 0.0823
-0.2148
-0.3367
-0.0775
-0.1677
-0.0668
-0.1016
[torch.FloatTensor of size 128]
), ('layer2.0.bn2.running_var', 
 0.0481
 0.0571
 0.0619
 0.0319
 0.0896
 0.0538
 0.0606
 0.1026
 0.0445
 0.1045
 0.0477
 0.0751
 0.0312
 0.0500
 0.0453
 0.0511
 0.0846
 0.0792
 0.1995
 0.0590
 0.0555
 0.0877
 0.0545
 0.0825
 0.0511
 0.1046
 0.0602
 0.0467
 0.0575
 0.0667
 0.0973
 0.0930
 0.0601
 0.0702
 0.0693
 0.0347
 0.1059
 0.0404
 0.0449
 0.2404
 0.1996
 0.1850
 0.0337
 0.0491
 0.0327
 0.0976
 0.0398
 0.0999
 0.0879
 0.0753
 0.0368
 0.0639
 0.1159
 0.0487
 0.1282
 0.0614
 0.0541
 0.0333
 0.0908
 0.0726
 0.0490
 0.0751
 0.0646
 0.0694
 0.1447
 0.1111
 0.1868
 0.0648
 0.0639
 0.0538
 0.0637
 0.0589
 0.0643
 0.1066
 0.1363
 0.0845
 0.0670
 0.1007
 0.0361
 0.0741
 0.0437
 0.0776
 0.0721
 0.0685
 0.0612
 0.0608
 0.0688
 0.1067
 0.0610
 0.0797
 0.0385
 0.0575
 0.0512
 0.0672
 0.0229
 0.0898
 0.0729
 0.0448
 0.0379
 0.2440
 0.0769
 0.0878
 0.0522
 0.0541
 0.0225
 0.0741
 0.1303
 0.0576
 0.0836
 0.0499
 0.0524
 0.1636
 0.0871
 0.0577
 0.0498
 0.1113
 0.0679
 0.0683
 0.0465
 0.0505
 0.1792
 0.0842
 0.0414
 0.0971
 0.0470
 0.0575
 0.0490
 0.0455
[torch.FloatTensor of size 128]
), ('layer2.0.downsample.0.weight', 
( 0 , 0 ,.,.) = 
  1.5916e-02

( 0 , 1 ,.,.) = 
 -3.1090e-01

( 0 , 2 ,.,.) = 
  1.2615e-02
    ... 

( 0 ,61 ,.,.) = 
 -1.6723e-01

( 0 ,62 ,.,.) = 
  1.2692e-02

( 0 ,63 ,.,.) = 
  1.3152e-02
      ⋮  

( 1 , 0 ,.,.) = 
  3.5526e-03

( 1 , 1 ,.,.) = 
 -1.0868e-03

( 1 , 2 ,.,.) = 
 -8.2883e-03
    ... 

( 1 ,61 ,.,.) = 
 -2.3444e-02

( 1 ,62 ,.,.) = 
 -7.5592e-02

( 1 ,63 ,.,.) = 
 -1.2622e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -4.1898e-02

( 2 , 1 ,.,.) = 
  7.9478e-03

( 2 , 2 ,.,.) = 
 -1.6623e-01
    ... 

( 2 ,61 ,.,.) = 
  3.1887e-02

( 2 ,62 ,.,.) = 
 -1.8766e-02

( 2 ,63 ,.,.) = 
  6.4507e-02
...     
      ⋮  

(125, 0 ,.,.) = 
 -2.8725e-02

(125, 1 ,.,.) = 
  4.7026e-02

(125, 2 ,.,.) = 
 -5.2251e-02
    ... 

(125,61 ,.,.) = 
 -4.7365e-02

(125,62 ,.,.) = 
  5.8639e-02

(125,63 ,.,.) = 
  5.8808e-02
      ⋮  

(126, 0 ,.,.) = 
 -7.7884e-03

(126, 1 ,.,.) = 
 -2.0288e-02

(126, 2 ,.,.) = 
  5.6392e-02
    ... 

(126,61 ,.,.) = 
  7.8023e-01

(126,62 ,.,.) = 
 -2.2917e-03

(126,63 ,.,.) = 
 -2.5941e-02
      ⋮  

(127, 0 ,.,.) = 
 -2.8316e-02

(127, 1 ,.,.) = 
 -1.3194e-02

(127, 2 ,.,.) = 
 -5.1356e-02
    ... 

(127,61 ,.,.) = 
  2.3552e-02

(127,62 ,.,.) = 
 -6.7667e-02

(127,63 ,.,.) = 
  2.6754e-02
[torch.FloatTensor of size 128x64x1x1]
), ('layer2.0.downsample.1.weight', 
 0.3334
 0.0581
 0.0715
 0.3442
 0.1756
 0.1509
 0.1568
 0.3100
 0.1927
 0.1516
 0.3044
 0.2238
 0.3706
 0.1739
 0.3051
 0.2610
 0.1575
 0.2015
 0.2933
 0.1010
 0.5871
 0.0676
 0.2499
 0.0929
 0.2443
 0.0495
 0.2449
 0.2750
 0.3071
 0.3025
 0.1818
 0.0688
 0.2223
 0.3766
 0.4661
 0.3284
 0.1035
 0.3400
 0.2325
 0.1514
 0.1753
 0.2269
 0.2606
 0.1831
 0.2894
 0.2590
 0.2208
 0.1399
 0.0643
 0.2833
 0.3451
 0.2017
 0.0696
 0.2722
 0.1127
 0.2917
 0.2358
 0.2703
 0.0911
 0.2591
 0.1302
 0.2261
 0.1967
 0.0539
 0.0697
 0.0524
 0.1050
 0.0861
 0.1173
 0.0957
 0.1862
 0.1642
 0.1336
 0.1065
 0.1312
 0.0888
 0.0793
 0.0475
 0.3049
 0.2325
 0.2908
 0.1292
 0.0778
 0.2263
 0.2379
 0.3405
 0.0914
 0.1936
 0.1223
 0.1400
 0.2953
 0.2360
 0.1681
 0.1338
 0.2666
 0.1495
 0.0761
 0.1674
 0.1784
 0.1720
 0.2318
 0.3753
 0.2103
 0.1922
 0.4002
 0.1718
 0.0593
 0.0742
 0.0686
 0.1931
 0.1386
 0.1111
 0.3055
 0.1205
 0.3443
 0.1633
 0.3673
 0.1534
 0.0742
 0.2088
 0.0394
 0.2594
 0.1385
-0.0051
 0.1905
 0.1275
 0.3071
 0.1682
[torch.FloatTensor of size 128]
), ('layer2.0.downsample.1.bias', 
 0.0246
 0.0593
 0.1347
-0.1089
-0.0470
-0.1359
-0.0550
 0.0509
-0.0613
 0.0916
 0.0031
-0.0274
-0.0539
 0.0177
 0.0432
 0.0074
 0.0548
-0.0321
-0.0224
 0.0142
-0.2150
-0.1160
 0.0486
-0.1141
 0.1066
 0.0355
 0.0140
 0.0177
 0.0781
 0.1331
 0.0139
 0.0447
 0.1063
 0.0528
-0.0539
-0.1160
 0.1055
-0.1591
 0.0100
 0.1197
 0.0170
 0.0929
-0.0675
 0.0987
 0.1034
 0.0501
 0.0297
 0.0281
-0.0075
-0.0577
-0.0144
-0.1640
 0.1255
 0.0817
 0.0635
 0.0936
 0.0213
 0.0486
-0.1174
 0.0237
-0.2177
 0.0099
-0.1883
 0.0467
-0.0829
 0.0585
-0.0306
 0.0509
 0.0541
-0.1671
 0.0115
-0.0302
-0.1393
 0.0115
 0.0428
 0.1189
-0.1289
 0.0479
 0.0474
-0.0625
 0.0009
-0.0144
 0.0909
 0.1342
-0.0338
 0.0560
 0.0848
-0.0467
 0.0228
-0.0097
 0.1360
-0.2625
 0.0088
-0.0553
 0.0383
-0.0720
 0.0907
 0.1612
-0.1076
 0.1011
-0.0519
 0.0838
-0.0704
-0.0806
-0.0243
 0.0533
 0.1277
 0.1403
-0.0593
-0.0639
-0.0766
-0.1163
 0.0661
-0.1644
 0.0422
-0.2786
-0.1006
-0.0696
-0.0761
 0.0371
-0.0247
 0.0916
-0.0200
-0.0176
 0.0298
-0.0373
 0.0466
-0.1371
[torch.FloatTensor of size 128]
), ('layer2.0.downsample.1.running_mean', 
-0.2113
 0.1359
 0.0039
 0.0886
-0.0546
-0.2716
 0.2521
-0.2035
 0.0303
-0.1464
-0.2640
-0.4436
-0.3815
-0.1463
 0.0573
-0.2120
-0.0665
 0.2438
 0.0832
 0.0040
-0.2136
-0.1755
-0.7201
-0.2233
 0.1047
 0.1467
-0.3165
-0.2010
 0.2569
-0.8141
-0.0867
-0.0875
-0.9794
-0.2197
-0.0568
-0.3848
 0.2579
 0.1735
-0.0528
 0.3276
-0.4380
 0.1895
-0.1316
-0.3101
-0.2862
-0.0167
-0.2216
-0.1930
 0.0454
-0.3049
 0.1863
-0.5461
 0.0461
 0.1899
-0.0353
-0.2415
 0.0813
 0.4788
 0.0519
 0.0438
 0.1379
-0.4036
-0.1231
 0.0551
-0.0663
 0.1699
-0.3095
-0.1080
-0.1431
 0.2339
-0.2893
 0.3513
 0.1893
-0.0789
-0.5882
-0.1365
-0.2919
 0.2869
 0.3085
-0.1096
 0.3905
-0.2630
-0.2150
-0.1966
-0.2579
-0.0904
 0.0506
-0.0275
 0.4067
 0.0970
-0.3976
 0.2176
 0.2585
 0.1078
-0.2607
-0.1126
-0.2001
-0.4400
-0.1181
 0.2168
-0.1290
-0.1434
 0.2498
-0.2811
-0.2768
-0.5209
 0.1785
 0.1161
-0.1806
-0.1448
-0.0704
-0.3591
-0.4581
-0.1117
-0.1916
 0.7261
-0.2382
 0.0126
 0.0749
-0.0097
 0.0480
 0.9940
 0.0634
 0.0629
-0.7954
-0.1612
 1.3040
-0.2879
[torch.FloatTensor of size 128]
), ('layer2.0.downsample.1.running_var', 
 0.1951
 0.0151
 0.0247
 0.0691
 0.0665
 0.0386
 0.0292
 0.1873
 0.0476
 0.0859
 0.1065
 0.0916
 0.1233
 0.0595
 0.1220
 0.0878
 0.0620
 0.0835
 0.1198
 0.0264
 0.1417
 0.0151
 0.0808
 0.0223
 0.1227
 0.0093
 0.1094
 0.1057
 0.1190
 0.1483
 0.0764
 0.0185
 0.0642
 0.2118
 0.1243
 0.0555
 0.0427
 0.0556
 0.1126
 0.0959
 0.0943
 0.1135
 0.0661
 0.0704
 0.1229
 0.1406
 0.0859
 0.0672
 0.0138
 0.1057
 0.1114
 0.0589
 0.0269
 0.0969
 0.0489
 0.1290
 0.0768
 0.0935
 0.0215
 0.1296
 0.0122
 0.0591
 0.0583
 0.0216
 0.0135
 0.0106
 0.0342
 0.0199
 0.0566
 0.0168
 0.0640
 0.0537
 0.0322
 0.0318
 0.0584
 0.0361
 0.0155
 0.0159
 0.0949
 0.0965
 0.0927
 0.0331
 0.0240
 0.1121
 0.0693
 0.2177
 0.0251
 0.0650
 0.0345
 0.0357
 0.1534
 0.0568
 0.0370
 0.0442
 0.0752
 0.0413
 0.0251
 0.0582
 0.0370
 0.1190
 0.0993
 0.2644
 0.0537
 0.0495
 0.1122
 0.0638
 0.0302
 0.0376
 0.0187
 0.0634
 0.0307
 0.0378
 0.1793
 0.0240
 0.2015
 0.0337
 0.1444
 0.0368
 0.0165
 0.0710
 0.0133
 0.2638
 0.0288
 0.0057
 0.0462
 0.0291
 0.1198
 0.0450
[torch.FloatTensor of size 128]
), ('layer2.1.conv1.weight', 
( 0 , 0 ,.,.) = 
 -9.9023e-04 -7.7429e-03 -7.9740e-03
  2.4844e-02  1.8642e-03  5.8352e-03
  9.5089e-03 -1.6476e-02  3.9157e-03

( 0 , 1 ,.,.) = 
 -2.1488e-02 -1.2330e-03 -1.4281e-02
 -1.7044e-02  9.5922e-03  7.0445e-03
  1.0790e-02 -7.2350e-03 -1.1357e-02

( 0 , 2 ,.,.) = 
 -1.1126e-03  3.0388e-02  2.2247e-02
 -6.1184e-02 -2.3797e-02  2.3747e-03
  4.0678e-02 -1.0356e-01 -6.0011e-02
    ... 

( 0 ,125,.,.) = 
 -8.5833e-03  1.1438e-02  2.0800e-02
 -1.6565e-02 -3.9587e-02  1.2594e-02
 -1.4314e-03 -5.4257e-03  3.6794e-02

( 0 ,126,.,.) = 
 -1.3687e-02 -2.9514e-02 -1.4745e-02
  2.8299e-02  2.2096e-02  3.4839e-03
 -4.3521e-03 -2.6706e-03  1.2258e-04

( 0 ,127,.,.) = 
  7.6403e-03  2.0666e-02  3.7429e-02
  6.9478e-03  4.3983e-02  1.7538e-02
 -9.7797e-03 -2.4789e-02 -1.1349e-03
      ⋮  

( 1 , 0 ,.,.) = 
  8.4439e-02  8.4827e-02 -5.1478e-02
  3.5253e-02 -1.1375e-03 -1.0331e-01
 -6.4078e-02 -1.2660e-01 -1.2952e-01

( 1 , 1 ,.,.) = 
  1.0628e-03 -1.4083e-02  4.7109e-03
 -2.1059e-02 -2.8778e-02  9.9708e-03
  1.4074e-02  1.8691e-02  5.8192e-02

( 1 , 2 ,.,.) = 
  2.2139e-02  8.9027e-03  1.4790e-02
 -1.7497e-02 -5.3924e-03  2.7834e-02
 -1.3855e-02 -1.3346e-02  1.7668e-02
    ... 

( 1 ,125,.,.) = 
 -3.8032e-02 -2.3097e-02 -7.1775e-03
 -3.5089e-02  1.0861e-02  1.3640e-02
  6.3449e-04  9.7476e-03  7.3670e-03

( 1 ,126,.,.) = 
 -4.4184e-02 -1.6190e-02  1.2243e-02
 -4.0349e-02 -1.7894e-02  2.8911e-02
 -6.5176e-03 -1.0490e-02  9.1658e-03

( 1 ,127,.,.) = 
  4.3621e-03  1.3119e-02  1.8442e-03
  1.1555e-02 -1.3031e-02 -9.5657e-03
 -2.3314e-02  1.1609e-03  2.6771e-03
      ⋮  

( 2 , 0 ,.,.) = 
 -2.1180e-02 -6.2213e-03  1.7609e-03
 -4.7424e-03  1.1101e-02  1.1296e-02
 -1.4529e-02  2.9843e-02  2.4383e-03

( 2 , 1 ,.,.) = 
  6.9183e-03  9.2937e-03  3.0078e-02
 -4.2612e-03  4.9560e-03 -4.7338e-03
  3.1360e-02  1.9035e-03 -4.7242e-03

( 2 , 2 ,.,.) = 
 -3.6726e-02  5.7285e-03  1.3919e-01
 -4.2992e-02  9.4023e-04  7.7141e-02
 -5.0050e-02 -4.9479e-03  2.4693e-02
    ... 

( 2 ,125,.,.) = 
  3.7203e-02  7.4712e-03 -4.2659e-02
 -8.1729e-03 -9.2536e-02 -5.4934e-03
 -2.5927e-02  8.3993e-04  7.4632e-02

( 2 ,126,.,.) = 
  1.8076e-02  4.5272e-03 -1.3757e-02
 -1.8939e-02 -3.2739e-02 -2.9666e-02
 -2.0608e-02 -4.6167e-03  1.3080e-03

( 2 ,127,.,.) = 
 -1.2078e-02 -2.0285e-03 -1.6998e-02
 -3.4805e-02 -4.9195e-02 -3.1973e-02
 -2.1021e-02 -5.1164e-03 -4.8522e-03
...     
      ⋮  

(125, 0 ,.,.) = 
  3.1791e-02  2.2948e-02  1.0390e-02
 -1.2628e-02 -2.9320e-03  4.2645e-03
 -2.1707e-02 -1.0856e-02  1.6094e-02

(125, 1 ,.,.) = 
 -1.4525e-03 -1.0131e-02 -4.6862e-04
  2.2130e-02  2.2736e-02  5.0183e-03
 -6.0125e-02 -4.3150e-02 -4.4480e-02

(125, 2 ,.,.) = 
  3.0761e-03  3.4396e-03  6.0877e-03
 -1.3683e-02  4.0576e-03 -2.6544e-02
  6.8231e-02  6.3474e-02 -9.3660e-03
    ... 

(125,125,.,.) = 
  1.8752e-02  1.9400e-02  4.1691e-02
  8.7770e-03  8.2394e-04  1.8619e-02
  1.8796e-02  6.2238e-02 -2.3801e-02

(125,126,.,.) = 
 -2.9788e-02 -3.4598e-02 -2.5225e-02
  8.4234e-03 -2.3222e-02 -9.4612e-03
  6.9035e-03  6.9737e-02 -1.3359e-02

(125,127,.,.) = 
  2.6981e-03 -4.3182e-02 -1.6731e-02
  2.5812e-02 -7.2025e-02 -6.5399e-02
  4.6257e-02  2.9469e-02 -1.5811e-02
      ⋮  

(126, 0 ,.,.) = 
 -2.1079e-02  3.8220e-02  8.3305e-03
 -5.9912e-03  3.5584e-02 -1.7534e-03
  1.8735e-02  7.0859e-03 -3.5151e-03

(126, 1 ,.,.) = 
 -4.5937e-02 -7.4695e-02 -5.3608e-02
 -8.6266e-03  9.0894e-03 -3.0345e-02
 -2.8158e-02 -2.1204e-02 -8.4730e-03

(126, 2 ,.,.) = 
 -7.1772e-02 -6.8582e-02  2.5544e-02
  5.0363e-02  2.5269e-02  5.6668e-02
  2.6238e-03  1.3871e-03 -8.4692e-03
    ... 

(126,125,.,.) = 
 -2.9644e-02  1.0896e-02 -3.0402e-02
  1.5095e-03  5.0455e-02  1.5597e-02
 -2.1015e-02 -1.0757e-02 -3.4942e-02

(126,126,.,.) = 
 -2.7573e-02  2.9707e-02 -2.9490e-02
  2.3301e-03 -3.9011e-02  6.8010e-03
  4.4006e-02  3.5397e-02  7.9087e-02

(126,127,.,.) = 
 -2.7480e-02  5.0337e-02  1.4290e-02
 -5.2482e-02 -4.7748e-03  1.2988e-02
 -1.8935e-02 -3.0808e-02 -1.7583e-02
      ⋮  

(127, 0 ,.,.) = 
  3.2280e-02  4.7408e-02  3.4054e-02
  2.1445e-02  3.8987e-03  4.6985e-04
  1.5159e-02  8.2067e-03  3.2426e-02

(127, 1 ,.,.) = 
  9.2653e-03  2.3661e-02  4.2089e-02
  2.1976e-02  4.6128e-02  1.1402e-02
  7.2843e-03  5.2285e-02  8.6340e-03

(127, 2 ,.,.) = 
  1.4022e-02  1.2800e-02  3.5398e-02
 -4.4398e-02  1.7399e-02 -1.5838e-02
  3.1712e-02  5.8679e-02 -9.3244e-03
    ... 

(127,125,.,.) = 
 -4.8399e-03  7.8628e-03 -5.6169e-04
  8.0402e-03  1.7392e-02  7.8734e-03
 -1.7713e-02 -4.5957e-02 -9.8762e-03

(127,126,.,.) = 
 -9.7569e-03 -7.5795e-03 -2.4627e-02
 -8.2454e-03  6.3065e-02 -3.2954e-03
 -7.7549e-03 -1.3404e-04 -8.1337e-03

(127,127,.,.) = 
  1.7664e-02  1.0114e-02  4.2687e-03
 -3.7950e-03  2.6715e-02  2.0121e-02
  1.6868e-02 -6.6515e-03 -1.1107e-02
[torch.FloatTensor of size 128x128x3x3]
), ('layer2.1.bn1.weight', 
 0.3323
 0.2908
 0.3246
 0.3435
 0.3011
 0.3054
 0.3041
 0.3539
 0.2862
 0.3601
 0.2970
 0.3381
 0.2565
 0.3276
 0.3030
 0.4085
 0.3519
 0.4218
 0.3055
 0.2551
 0.3425
 0.3215
 0.3366
 0.2700
 0.2849
 0.3954
 0.3166
 0.3286
 0.3515
 0.3953
 0.2768
 0.3625
 0.1988
 0.2717
 0.3355
 0.2797
 0.2510
 0.3832
 0.3266
 0.3263
 0.3681
 0.3401
 0.3651
 0.3391
 0.3071
 0.3231
 0.3691
 0.2410
 0.3536
 0.3189
 0.3238
 0.3611
 0.3086
 0.3309
 0.3886
 0.4362
 0.4550
 0.2962
 0.3071
 0.3386
 0.3317
 0.3228
 0.2393
 0.3147
 0.2738
 0.3218
 0.3198
 0.3411
 0.3611
 0.2833
 0.3035
 0.3183
 0.3146
 0.3890
 0.2607
 0.3479
 0.3236
 0.3709
 0.2592
 0.3742
 0.2555
 0.2966
 0.3505
 0.3165
 0.2808
 0.2660
 0.2817
 0.4795
 0.3372
 0.2723
 0.2955
 0.3225
 0.2470
 0.3160
 0.3515
 0.3131
 0.3372
 0.2837
 0.3540
 0.2897
 0.2490
 0.3019
 0.3114
 0.3510
 0.3022
 0.3617
 0.2859
 0.2831
 0.3243
 0.2769
 0.3314
 0.2394
 0.2932
 0.2788
 0.2686
 0.3194
 0.3542
 0.2683
 0.2955
 0.2924
 0.3538
 0.4256
 0.3603
 0.3013
 0.2763
 0.4354
 0.3991
 0.2694
[torch.FloatTensor of size 128]
), ('layer2.1.bn1.bias', 
-0.1735
-0.2337
-0.3383
-0.0806
-0.1920
-0.0621
-0.1885
-0.2830
-0.1680
-0.1796
-0.2645
-0.1983
-0.1183
-0.2432
-0.1706
-0.3090
-0.2661
-0.4040
-0.1949
-0.1392
-0.2449
-0.1242
-0.2012
-0.1901
-0.1014
-0.3468
-0.2245
-0.3272
-0.3057
-0.3289
-0.1532
-0.1967
-0.0667
-0.3281
-0.1418
-0.1527
-0.0987
-0.3243
-0.2252
-0.3462
-0.2284
-0.2263
-0.1810
-0.1564
-0.1730
-0.1507
-0.2913
-0.1643
-0.1998
-0.1532
-0.2211
-0.2247
-0.0913
-0.1563
-0.2453
-0.4854
-0.4428
-0.1021
-0.1615
-0.2125
-0.2239
-0.1952
-0.0447
-0.1733
-0.1178
-0.4775
-0.2110
-0.2305
-0.1795
-0.1582
-0.2008
-0.2041
-0.1974
-0.2750
-0.0395
-0.2161
-0.2786
-0.2626
-0.0997
-0.2953
-0.1431
-0.1448
-0.1894
-0.1283
-0.1807
-0.1144
-0.1308
-0.4154
-0.2324
-0.1376
-0.1154
-0.2099
-0.0966
-0.1669
-0.3835
-0.2545
-0.1603
-0.1904
-0.2420
-0.1658
-0.1133
-0.1498
-0.1213
-0.2318
-0.2017
-0.3827
-0.1491
-0.1174
-0.1261
-0.2031
-0.1832
-0.2274
-0.1281
-0.2557
-0.1400
-0.0723
-0.2212
-0.1486
-0.2914
-0.1116
-0.2194
-0.4898
-0.3693
-0.1437
-0.1232
-0.3723
-0.6794
-0.1536
[torch.FloatTensor of size 128]
), ('layer2.1.bn1.running_mean', 
-0.3593
-0.4772
 0.2329
-0.7139
-0.6713
-0.5552
-0.4556
-0.6502
-0.2082
-0.4011
-0.3942
-0.2970
-0.1626
-0.4379
-0.3334
-0.6163
-0.2982
-0.5190
 0.1676
-0.1832
-0.2080
-0.5296
-0.4245
-0.1755
-0.8556
-0.3067
-0.4560
-0.1642
-0.5059
-0.4529
-0.4532
-0.7254
 0.6037
-0.2509
-0.0199
-0.4672
-0.5901
-0.4195
-0.3272
 0.5658
-0.3438
-0.5992
-0.2683
-0.4591
-0.3460
-0.1669
-0.3271
 0.0351
-0.4175
-0.3984
-0.4118
-0.3619
-0.1313
-0.2758
-0.7196
-0.5401
-1.1739
-0.0497
-0.1358
-0.6139
-0.5143
-0.3017
-0.0465
-0.3977
-0.0251
 0.3821
-0.5079
-0.2795
-0.1904
 0.3993
-0.4418
-0.1813
-0.6122
-0.3132
-0.0656
-0.4458
 0.0894
-0.3759
 0.0440
-0.3972
-0.2860
 0.0877
-0.0825
-0.7620
-0.0260
-0.3861
-0.1128
-0.4129
-0.2883
 1.1054
-0.3892
-0.0393
-0.1394
-0.1678
 0.1825
-0.4379
-0.2522
-0.1119
-0.5098
-0.0328
-0.2874
-0.3809
-0.1929
-0.3355
-0.3863
-0.1617
-0.2289
 0.1665
-0.6874
-0.1705
-0.5216
-0.3315
-0.6678
 0.5342
 0.1433
-0.5558
-0.4277
-0.3240
-0.2142
 0.0216
-0.4379
-0.8486
-0.7675
-0.4512
 0.2788
-0.9694
-1.1691
 0.0198
[torch.FloatTensor of size 128]
), ('layer2.1.bn1.running_var', 
 0.2660
 0.1422
 0.2404
 0.4297
 0.1306
 0.3336
 0.1939
 0.1600
 0.2166
 0.4070
 0.1029
 0.3442
 0.2021
 0.1590
 0.2226
 0.1842
 0.2731
 0.2262
 0.2178
 0.1536
 0.1722
 0.2035
 0.3391
 0.1572
 0.2276
 0.2740
 0.1543
 0.1307
 0.1649
 0.2571
 0.1431
 0.2349
 0.1765
 0.1171
 0.3401
 0.1657
 0.1307
 0.3169
 0.1973
 0.1504
 0.3181
 0.2529
 0.2980
 0.2461
 0.2857
 0.2814
 0.1889
 0.1125
 0.2079
 0.2131
 0.2158
 0.3372
 0.2791
 0.2852
 0.5102
 0.1808
 0.2540
 0.3876
 0.2048
 0.1716
 0.2775
 0.2385
 0.1992
 0.3325
 0.1832
 0.1246
 0.1852
 0.2083
 0.3179
 0.3077
 0.1842
 0.1845
 0.1684
 0.2447
 0.2990
 0.2412
 0.3370
 0.1974
 0.1679
 0.2459
 0.1670
 0.1764
 0.2258
 0.3743
 0.1464
 0.1706
 0.2925
 0.2594
 0.2123
 0.2191
 0.2281
 0.1809
 0.1278
 0.2575
 0.3387
 0.1755
 0.3083
 0.1399
 0.2197
 0.1594
 0.1311
 0.2250
 0.3422
 0.2391
 0.1240
 0.2068
 0.2784
 0.1800
 0.3133
 0.1167
 0.3066
 0.1008
 0.1729
 0.3045
 0.2187
 0.2862
 0.2361
 0.1560
 0.1271
 0.2467
 0.2201
 0.1423
 0.1531
 0.2995
 0.2069
 0.2126
 0.1369
 0.1566
[torch.FloatTensor of size 128]
), ('layer2.1.conv2.weight', 
( 0 , 0 ,.,.) = 
 -1.6153e-02  5.0134e-03 -9.0186e-04
 -8.8386e-03 -1.9390e-02 -2.4174e-02
  6.3052e-03  1.0245e-02 -1.3816e-02

( 0 , 1 ,.,.) = 
 -1.0979e-02  2.6164e-03  2.3656e-02
 -1.7687e-02  1.9861e-02  6.4150e-02
  6.0224e-03  7.6342e-02  1.0215e-01

( 0 , 2 ,.,.) = 
 -8.1113e-03  6.8414e-03  2.5436e-02
 -8.0696e-03  9.2929e-03  8.2899e-03
  7.7306e-03  1.2159e-02  7.1625e-03
    ... 

( 0 ,125,.,.) = 
  1.5175e-02  6.2196e-03  2.1798e-02
 -1.5199e-02 -8.5439e-02 -2.4713e-02
 -1.8460e-02 -4.9767e-02 -1.6818e-03

( 0 ,126,.,.) = 
  3.0728e-02  3.9962e-02  3.1253e-02
 -1.8738e-02 -6.7510e-02 -2.7649e-02
  2.8429e-02  3.1854e-02  1.0543e-02

( 0 ,127,.,.) = 
 -1.8320e-02 -1.5854e-02 -1.0685e-02
 -2.7442e-02 -3.0616e-02 -1.0485e-02
 -1.5122e-02 -1.0595e-02 -2.5322e-02
      ⋮  

( 1 , 0 ,.,.) = 
  3.6868e-03  3.0996e-02  4.2763e-02
  4.6537e-02  4.8606e-02  2.3800e-03
  1.6654e-02  1.2900e-02 -1.8230e-02

( 1 , 1 ,.,.) = 
 -1.0441e-02 -1.5934e-03 -1.6128e-02
 -1.2799e-02  4.9570e-03 -1.4585e-02
 -2.3553e-02 -3.7023e-03 -1.4399e-02

( 1 , 2 ,.,.) = 
  1.0338e-02 -1.7560e-02 -3.3046e-02
 -3.2090e-02 -5.9258e-03  2.0201e-03
 -4.1428e-02  4.9121e-03  1.6906e-02
    ... 

( 1 ,125,.,.) = 
 -4.9525e-02 -4.6498e-02 -5.9916e-02
 -2.6670e-02 -1.9079e-02 -2.9419e-02
 -3.9683e-03  1.9405e-02  7.3317e-03

( 1 ,126,.,.) = 
  1.4293e-02  1.5643e-02  5.8117e-04
  5.1493e-03  7.4332e-03 -3.6928e-03
 -1.3522e-02 -8.5536e-03 -2.1259e-03

( 1 ,127,.,.) = 
 -3.0908e-02 -1.9839e-02 -1.9375e-02
 -1.0368e-02 -2.4294e-02  2.4103e-04
 -1.9275e-02 -2.9707e-02 -1.5623e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -4.9212e-02 -2.9588e-02  8.8023e-02
  4.7453e-03  4.3564e-02  9.3115e-02
  7.4083e-02  4.2868e-02 -5.1033e-02

( 2 , 1 ,.,.) = 
  6.6992e-03  2.1676e-02 -5.4254e-04
  1.9286e-02  1.0920e-02 -4.5440e-03
  3.1075e-02 -1.7168e-03 -2.7603e-02

( 2 , 2 ,.,.) = 
  6.0096e-02 -2.9359e-02 -5.8911e-02
 -1.9133e-02 -8.1624e-02 -2.2553e-02
  1.1597e-02  2.5092e-02  1.2130e-02
    ... 

( 2 ,125,.,.) = 
  5.4307e-03 -2.3130e-02  9.6233e-03
 -4.3785e-02 -2.6735e-02  2.1993e-02
 -3.5919e-02 -4.1009e-02 -2.1860e-02

( 2 ,126,.,.) = 
  3.3705e-02  6.2938e-02  4.3502e-02
  1.1111e-03  1.9243e-02 -1.9707e-03
 -1.1493e-02 -5.3445e-02 -9.6676e-03

( 2 ,127,.,.) = 
 -2.6664e-03 -2.6954e-02 -1.7667e-02
 -8.3382e-03  8.9920e-03  8.1260e-04
 -2.6832e-02 -3.5991e-02 -4.2495e-02
...     
      ⋮  

(125, 0 ,.,.) = 
 -1.8876e-03 -2.2728e-02 -4.2991e-03
 -9.2231e-03 -3.4333e-02 -1.3392e-02
 -1.2774e-02 -1.1435e-02  1.5617e-02

(125, 1 ,.,.) = 
  1.0703e-02  1.2792e-02  2.2662e-02
  7.3185e-03 -1.7847e-02  1.0674e-02
 -1.5936e-02 -1.9318e-02  2.1768e-02

(125, 2 ,.,.) = 
 -7.3009e-03  3.0234e-02 -1.1899e-02
 -2.6099e-02  3.7452e-03  3.2776e-02
 -3.3101e-02 -7.1923e-03  1.6559e-02
    ... 

(125,125,.,.) = 
 -3.2818e-02 -1.0021e-01 -4.7012e-02
  2.8293e-03  4.1410e-02 -1.1391e-02
 -1.1152e-02 -5.5861e-03  1.9968e-02

(125,126,.,.) = 
 -2.3932e-02 -3.0687e-02 -1.1756e-03
  1.5311e-03 -3.5002e-02 -2.4414e-02
 -8.7575e-03 -7.7842e-02 -3.8842e-02

(125,127,.,.) = 
  2.6107e-02  1.5406e-02  1.7569e-02
 -1.5130e-02 -4.8687e-03  3.0773e-03
 -1.3470e-02 -9.3201e-03 -4.8982e-03
      ⋮  

(126, 0 ,.,.) = 
 -2.0228e-02 -3.0006e-02 -9.8419e-03
 -3.8676e-02 -3.3481e-02 -7.4265e-03
 -2.8935e-02 -3.2037e-02  2.9245e-03

(126, 1 ,.,.) = 
 -1.2900e-02  3.8046e-03  1.5940e-02
 -2.4030e-02  2.0666e-03  5.7250e-03
  6.9989e-03  1.2192e-02  1.5406e-02

(126, 2 ,.,.) = 
 -1.5018e-02 -9.0988e-03  2.4450e-02
  1.0039e-02  1.2561e-02  2.6997e-02
  2.9556e-02  1.9463e-02 -2.6584e-03
    ... 

(126,125,.,.) = 
 -1.8481e-02  3.9417e-04  9.9768e-03
 -4.5447e-03  1.2307e-02  3.5507e-02
 -1.1873e-03 -2.6185e-03  1.1547e-02

(126,126,.,.) = 
  4.6292e-03 -1.3690e-02 -1.0171e-02
  1.2104e-02  1.6793e-02  1.3003e-02
  1.3328e-03  3.4701e-03  1.7323e-02

(126,127,.,.) = 
 -8.7332e-05  5.8646e-03 -3.5117e-03
  3.8112e-03 -7.1828e-03 -1.1407e-02
  1.9705e-02  2.0556e-02  5.7084e-03
      ⋮  

(127, 0 ,.,.) = 
  3.6998e-02  3.2616e-02 -9.4535e-04
 -2.9484e-02 -2.3441e-02 -2.8085e-02
 -2.5451e-02  3.9048e-02  3.6686e-02

(127, 1 ,.,.) = 
 -1.8732e-02 -1.5352e-02  1.1149e-02
 -2.1324e-03 -2.3177e-02  1.7628e-02
 -4.0012e-03  1.5463e-02  9.2496e-03

(127, 2 ,.,.) = 
 -2.9346e-02  7.7071e-03 -5.6520e-03
 -2.3611e-02 -1.9390e-03  2.0221e-02
  8.0955e-03 -2.3268e-02 -2.8827e-02
    ... 

(127,125,.,.) = 
 -3.3532e-02 -2.9092e-02 -4.0045e-02
  2.6530e-03 -2.0568e-02  1.3075e-02
  1.6061e-02 -5.5725e-02 -4.9167e-02

(127,126,.,.) = 
 -7.9132e-03  2.1466e-02  2.0913e-02
 -1.7259e-02 -2.5851e-02  2.7177e-03
 -4.6532e-02 -2.4846e-02 -1.9911e-02

(127,127,.,.) = 
 -5.0350e-02 -2.5574e-02  1.7763e-02
 -3.4474e-02  5.5247e-03 -2.7754e-02
 -2.0743e-02 -2.2332e-02 -4.3512e-02
[torch.FloatTensor of size 128x128x3x3]
), ('layer2.1.bn2.weight', 
 0.1194
 0.1625
 0.3084
 0.2931
 0.2957
 0.5263
 0.4038
 0.2024
 0.3401
 0.1982
 0.2559
 0.2311
 0.1630
 0.2891
 0.2248
 0.2311
 0.2417
 0.2187
 0.1922
 0.3103
 0.2015
 0.4802
 0.2481
 0.3898
 0.3204
 0.4035
 0.2617
 0.1551
 0.2256
 0.2117
 0.2708
 0.3537
 0.2505
 0.1843
 0.2465
 0.6501
 0.3898
 0.4289
 0.1799
 0.1604
 0.1775
 0.3600
 0.2694
 0.1283
 0.1662
 0.1716
 0.1837
 0.1710
 0.4178
 0.3249
 0.1759
 0.4717
 0.4115
 0.1995
 0.2025
 0.1492
 0.2860
 0.1072
 0.3649
 0.1906
 0.5369
 0.2400
 0.4411
 0.1702
 0.1993
 0.2045
 0.1972
 0.4041
 0.3034
 0.6168
 0.2284
 0.3228
 0.4547
 0.4370
 0.1570
 0.4057
 0.5791
 0.2338
 0.1586
 0.3130
 0.2201
 0.3195
 0.1166
 0.2517
 0.2184
 0.0989
 0.3116
 0.2613
 0.3277
 0.1778
 0.2718
 0.4174
 0.5140
 0.2136
 0.1905
 0.2898
 0.2472
 0.1341
 0.6212
 0.1810
 0.2394
 0.1417
 0.1759
 0.2827
 0.1987
 0.3775
 0.3749
 0.1274
 0.3656
 0.4305
 0.4212
 0.2673
 0.2016
 0.5098
 0.1449
 0.4408
 0.3583
 0.2503
 0.5682
 0.2518
 0.1392
 0.0617
 0.3406
 0.1313
 0.4586
 0.2914
 0.1326
 0.3915
[torch.FloatTensor of size 128]
), ('layer2.1.bn2.bias', 
-0.1403
-0.0889
-0.4147
-0.2264
-0.0737
-0.3534
-0.3379
-0.0752
-0.1791
 0.0448
-0.2842
-0.1765
-0.1591
-0.0675
-0.1543
-0.1061
-0.2334
-0.0981
-0.0908
-0.0567
-0.1908
-0.2055
-0.2704
-0.1883
-0.3570
-0.1125
-0.1632
-0.0211
-0.1687
-0.2124
-0.1713
-0.0872
-0.2194
-0.1888
-0.2954
-0.4570
-0.0226
-0.0527
 0.0406
-0.0609
-0.0456
-0.1176
-0.0145
 0.0318
-0.2046
-0.0953
-0.0496
-0.1051
-0.0793
-0.1933
-0.1467
-0.3215
-0.3257
-0.2287
-0.0356
-0.1869
-0.1932
-0.0771
 0.2768
-0.0656
-0.0895
-0.2548
-0.2365
 0.0021
-0.0987
-0.3178
 0.1613
 0.0006
-0.2347
-0.4150
-0.1310
-0.3142
-0.2582
-0.5400
 0.0772
-0.2546
-0.4454
-0.0262
-0.0937
-0.2201
-0.2044
-0.0155
-0.0893
-0.2167
 0.1112
-0.0619
-0.1217
-0.1593
-0.1317
-0.1717
-0.3729
-0.3354
-0.3414
 0.0358
-0.2067
-0.1087
 0.0141
-0.0338
-0.2129
-0.1122
-0.1627
-0.2000
 0.0908
-0.0041
-0.1313
-0.2942
 0.0160
-0.1065
-0.1289
-0.1699
-0.1721
-0.1809
-0.2295
-0.3611
-0.1746
-0.3540
-0.1554
-0.2709
-0.2607
 0.0084
-0.0311
-0.0022
-0.0831
 0.0380
-0.4893
-0.2749
 0.1245
-0.1272
[torch.FloatTensor of size 128]
), ('layer2.1.bn2.running_mean', 
-0.0303
 0.0327
 0.0240
-0.0763
-0.1589
-0.0804
-0.1797
-0.0701
-0.1573
 0.1134
-0.0805
-0.0234
-0.0756
-0.1833
 0.0384
 0.0791
-0.0594
-0.0217
 0.0288
-0.1023
-0.0698
-0.0484
 0.1234
-0.1242
 0.0584
-0.1045
-0.0082
-0.0536
 0.0127
 0.0269
-0.1785
-0.0514
-0.0503
 0.0173
 0.0162
-0.2532
-0.2817
-0.2388
-0.0641
 0.0136
 0.1397
-0.2827
 0.0767
-0.0328
-0.0080
-0.0058
-0.1322
-0.0266
-0.3995
-0.0825
-0.1061
-0.0556
-0.0557
 0.0552
-0.1259
-0.0077
-0.1017
-0.0532
-0.1570
 0.0675
-0.5579
 0.0523
-0.1109
 0.0096
 0.0103
-0.0968
-0.0100
-0.2631
-0.1013
-0.0156
-0.0544
-0.1436
-0.0747
-0.0609
-0.0710
-0.1171
 0.0205
 0.0372
-0.0162
-0.0245
 0.1684
-0.2868
 0.0558
 0.0402
-0.1360
-0.0523
-0.0547
-0.1108
-0.2490
-0.0252
 0.0783
-0.1927
-0.1427
-0.1122
-0.0599
-0.0884
-0.0191
 0.0015
-0.5522
 0.0042
 0.0305
 0.0242
-0.1246
-0.1543
 0.0045
-0.1808
-0.2224
 0.0909
 0.0329
 0.5456
-0.0230
 0.0628
 0.0464
-0.0874
-0.0300
 0.1108
-0.0492
-0.0331
-0.2471
-0.0352
 0.0516
 0.0709
-0.2409
-0.0650
-0.1684
-0.0565
-0.1306
-0.0627
[torch.FloatTensor of size 128]
), ('layer2.1.bn2.running_var', 
1.00000e-02 *
  1.8228
  2.1225
  2.8612
  2.0886
  2.9474
  4.7744
  3.5290
  2.8429
  2.8470
  4.5069
  2.9840
  1.9491
  1.7088
  2.9840
  2.8539
  2.8518
  2.0139
  2.2774
  3.2135
  3.3348
  1.7759
  4.7420
  3.0149
  4.1645
  3.7812
  4.6252
  2.9589
  1.6504
  2.6924
  3.0834
  3.6263
  4.5937
  3.1620
  2.6538
  2.2904
  5.8237
  5.6463
  4.0456
  2.6616
  3.2348
  3.3927
  8.4368
  2.4933
  1.7348
  2.2366
  2.1032
  1.9272
  1.5102
  5.6145
  3.9999
  1.8257
  4.0509
  3.2031
  2.2098
  3.3824
  2.2704
  2.5319
  1.8465
  6.8178
  2.6885
  7.2726
  2.1805
  4.9063
  2.6663
  2.3015
  1.3440
  4.7817
  5.8346
  3.3150
  4.7472
  1.8629
  3.3559
  4.5253
  3.1564
  3.6324
  3.4589
  4.7584
  3.2355
  1.7391
  3.5121
  1.8529
  5.3177
  1.3671
  3.0469
  3.7829
  1.6996
  4.1624
  3.1600
  3.2903
  1.6922
  3.2056
  4.3576
  3.5142
  2.4761
  1.6919
  3.8553
  3.6356
  1.7814
  6.2490
  4.0622
  2.5852
  2.2963
  2.7265
  2.9650
  2.0724
  4.4788
  5.7808
  2.0073
  3.9706
  5.8224
  4.3781
  3.6008
  2.6018
  3.5214
  1.9792
  3.2273
  4.9339
  1.6944
  6.2593
  2.9896
  2.5511
  1.5677
  3.6686
  1.5467
  3.1936
  2.8402
  2.8767
  4.4939
[torch.FloatTensor of size 128]
), ('layer3.0.conv1.weight', 
( 0 , 0 ,.,.) = 
 -1.5906e-02 -1.6618e-02 -1.5938e-02
 -5.2744e-03  1.5103e-02  9.8805e-03
 -1.4850e-02  3.6254e-04 -1.1378e-02

( 0 , 1 ,.,.) = 
 -9.4971e-03 -1.8568e-02 -6.0605e-03
  9.7622e-03 -1.2294e-02 -5.2978e-03
  7.0518e-03 -1.6063e-02 -7.1445e-03

( 0 , 2 ,.,.) = 
 -2.2693e-02 -3.7669e-02 -3.3695e-02
 -3.1569e-02 -5.8022e-02 -3.9105e-02
 -3.4616e-02 -3.8806e-02 -1.5695e-02
    ... 

( 0 ,125,.,.) = 
  4.8713e-03  7.9539e-03  1.4374e-02
 -1.5242e-03  2.4200e-02  5.6440e-03
 -4.4355e-03  6.2454e-03  6.8561e-03

( 0 ,126,.,.) = 
  1.6028e-02 -1.2036e-02 -1.3101e-03
  9.5804e-03  5.7272e-03  1.6091e-03
 -9.9173e-03 -1.3593e-02 -6.3679e-03

( 0 ,127,.,.) = 
  5.3450e-02  4.6441e-02  2.4824e-02
  3.4065e-02 -2.8656e-03 -4.1207e-03
 -1.4000e-02 -4.6092e-03 -1.4152e-02
      ⋮  

( 1 , 0 ,.,.) = 
 -1.1567e-03 -1.8638e-02 -3.4453e-02
  4.9889e-03 -1.1695e-02 -3.3321e-02
  5.9653e-03 -1.6154e-02 -1.7452e-02

( 1 , 1 ,.,.) = 
  1.0729e-02  1.3964e-02 -1.9171e-02
  2.8854e-03  1.2573e-02  7.2767e-03
 -1.6815e-02 -1.8740e-02 -1.3784e-03

( 1 , 2 ,.,.) = 
 -2.1852e-02  6.2900e-03  1.5931e-02
 -3.5272e-03  5.6997e-03  3.1077e-02
  2.3169e-03  3.2389e-03  1.7490e-02
    ... 

( 1 ,125,.,.) = 
 -1.6246e-02 -7.7688e-03  7.7471e-03
 -1.4870e-03 -1.2226e-02 -9.3389e-03
  8.6164e-04 -2.2071e-03  7.3769e-03

( 1 ,126,.,.) = 
  2.9310e-03 -2.3592e-02  5.8461e-03
  1.4344e-02 -1.6924e-02 -6.1749e-03
 -7.7191e-03 -3.2305e-02 -3.3688e-02

( 1 ,127,.,.) = 
  8.6900e-03  1.3976e-02  8.0760e-03
 -3.3662e-03  1.0516e-02  1.4952e-02
  1.8944e-02  3.0948e-02  2.5647e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -3.5797e-02 -2.2565e-02 -1.4440e-02
 -7.5372e-03 -2.2142e-02  1.1150e-02
 -3.6385e-03 -1.4821e-02 -1.6427e-02

( 2 , 1 ,.,.) = 
 -1.4620e-02 -3.0657e-02 -2.0434e-02
 -2.8462e-02 -4.5328e-02 -5.7915e-02
  2.8774e-02 -1.5172e-02 -2.4541e-02

( 2 , 2 ,.,.) = 
  1.7403e-02  1.9920e-02 -4.6249e-03
  1.7813e-02  2.3648e-02  1.3638e-02
  2.9347e-02  4.3449e-02  1.8594e-02
    ... 

( 2 ,125,.,.) = 
  7.9258e-03 -1.2183e-02 -1.5811e-02
 -1.0720e-02 -3.1404e-02 -7.5279e-03
 -7.0299e-03 -1.7342e-02 -3.0783e-02

( 2 ,126,.,.) = 
 -1.0258e-02 -1.1796e-02 -1.7141e-02
 -2.6423e-02 -1.5036e-03  2.7959e-02
 -8.9306e-03  5.3510e-03  9.6632e-03

( 2 ,127,.,.) = 
  1.4481e-02 -3.1531e-02 -1.9707e-02
 -1.4944e-02 -1.7709e-02  7.6966e-03
  1.2465e-02  7.1035e-03 -6.1596e-03
...     
      ⋮  

(253, 0 ,.,.) = 
  5.3120e-03  2.5512e-02  7.1053e-03
  1.9666e-02  2.6990e-02  4.2043e-02
  4.1191e-02  2.2283e-02  3.5003e-02

(253, 1 ,.,.) = 
  2.5968e-03  4.0685e-03  1.0626e-02
  4.6474e-03  2.0337e-02  8.0847e-03
  1.4475e-02 -3.0070e-03 -1.9656e-02

(253, 2 ,.,.) = 
 -4.0235e-03  2.5510e-02  2.2875e-03
 -1.5182e-02  2.6031e-02  8.2526e-03
 -2.1065e-03  2.6928e-02  3.2296e-03
    ... 

(253,125,.,.) = 
  5.5063e-03 -4.8631e-03  1.8346e-02
  8.5499e-03  2.3002e-03  7.7201e-03
  8.2280e-03  9.5818e-03  2.1510e-02

(253,126,.,.) = 
 -1.7702e-02  9.9203e-03 -1.2934e-02
 -1.2670e-02  9.5506e-03 -1.2438e-02
  8.9810e-03  4.9343e-02  3.6238e-02

(253,127,.,.) = 
  1.2333e-02  1.8408e-02 -1.7794e-02
  5.7676e-03 -5.7844e-03 -1.1706e-02
  3.4462e-03 -1.0299e-02 -4.2529e-02
      ⋮  

(254, 0 ,.,.) = 
  3.1634e-02  7.6514e-02  4.4300e-02
  9.3963e-02  1.4798e-01  1.5104e-01
  6.6483e-02  1.3856e-01  1.1323e-01

(254, 1 ,.,.) = 
 -2.8205e-02 -4.0731e-03 -1.9967e-02
 -1.9283e-02 -1.2330e-03  1.0728e-02
 -1.6487e-02 -2.7540e-03  7.7751e-04

(254, 2 ,.,.) = 
 -1.2156e-02 -3.2183e-02 -1.5299e-02
 -9.1752e-04 -1.2350e-02 -3.8531e-03
 -1.9342e-02 -1.0735e-02 -2.1051e-02
    ... 

(254,125,.,.) = 
 -3.0457e-03  6.5687e-03 -3.2163e-04
  1.4628e-02 -1.6662e-02  1.4216e-02
  2.2738e-02  1.2016e-02  7.1802e-03

(254,126,.,.) = 
  3.9151e-03 -1.9739e-02  1.1058e-02
 -2.5105e-02 -3.8439e-02 -4.4722e-02
 -3.5862e-02 -9.8120e-02 -6.8447e-02

(254,127,.,.) = 
 -8.4853e-03  2.2905e-03  3.0757e-03
  3.8484e-03  1.8156e-02  6.9025e-03
  8.9456e-03  8.0009e-03  1.2579e-02
      ⋮  

(255, 0 ,.,.) = 
 -1.3006e-02 -9.0262e-03  1.0574e-03
 -2.5979e-02 -1.9484e-02 -9.3637e-03
  4.8438e-03  2.3742e-03  1.0574e-02

(255, 1 ,.,.) = 
 -2.4782e-03 -1.4049e-02 -2.8621e-02
 -2.3822e-03  1.1463e-03 -2.3321e-02
  1.2275e-02  8.3306e-04  1.4305e-03

(255, 2 ,.,.) = 
 -4.8958e-02 -4.3860e-02 -5.7901e-02
 -3.5920e-02 -3.6503e-02 -3.8574e-02
 -4.1023e-02 -3.3337e-02 -1.3673e-02
    ... 

(255,125,.,.) = 
 -1.1772e-02 -8.1042e-03 -1.5803e-02
 -2.7190e-02 -2.8550e-02  7.5042e-03
 -2.4363e-02  1.3943e-02  6.0615e-03

(255,126,.,.) = 
 -2.7317e-02  1.9704e-02  2.2183e-02
 -3.7557e-02  2.0815e-02  1.8682e-02
 -4.4557e-02 -4.3529e-03 -1.6779e-02

(255,127,.,.) = 
  1.9939e-02  2.6802e-02  1.1996e-02
  2.0260e-02  2.1540e-02  2.5003e-03
  1.8079e-04 -7.6315e-03 -1.9582e-02
[torch.FloatTensor of size 256x128x3x3]
), ('layer3.0.bn1.weight', 
 0.2856
 0.2425
 0.3032
 0.3168
 0.3011
 0.3475
 0.3076
 0.3105
 0.3646
 0.3255
 0.2195
 0.3167
 0.2674
 0.3104
 0.3026
 0.3443
 0.2915
 0.3379
 0.2887
 0.2996
 0.3588
 0.3164
 0.2882
 0.2917
 0.3492
 0.3749
 0.3587
 0.3166
 0.2756
 0.2978
 0.3364
 0.2893
 0.3106
 0.2506
 0.3460
 0.3621
 0.2570
 0.3695
 0.2935
 0.3286
 0.3243
 0.3188
 0.3093
 0.3314
 0.3550
 0.2978
 0.2737
 0.3023
 0.3179
 0.2831
 0.3065
 0.3390
 0.3053
 0.3099
 0.3017
 0.3472
 0.3034
 0.2935
 0.3352
 0.3676
 0.3163
 0.3404
 0.3078
 0.2819
 0.3794
 0.3083
 0.2778
 0.3363
 0.2284
 0.3259
 0.2790
 0.3072
 0.2975
 0.3847
 0.3372
 0.2253
 0.2827
 0.3737
 0.2796
 0.3485
 0.3879
 0.3288
 0.3340
 0.3335
 0.2756
 0.3500
 0.2897
 0.2798
 0.2907
 0.3220
 0.3824
 0.3522
 0.3278
 0.3689
 0.3147
 0.3600
 0.3123
 0.2519
 0.2355
 0.3211
 0.3203
 0.3345
 0.2768
 0.3341
 0.3153
 0.3175
 0.2224
 0.2956
 0.3206
 0.2658
 0.3662
 0.2715
 0.3655
 0.3427
 0.2820
 0.2754
 0.4669
 0.3090
 0.3468
 0.3144
 0.3220
 0.2765
 0.3301
 0.3219
 0.3152
 0.2813
 0.2497
 0.3514
 0.3264
 0.3014
 0.2734
 0.3522
 0.3831
 0.3028
 0.2940
 0.2825
 0.3099
 0.2373
 0.2705
 0.4189
 0.2985
 0.3841
 0.2754
 0.3091
 0.3169
 0.2824
 0.2749
 0.3493
 0.4018
 0.3108
 0.2176
 0.2821
 0.3199
 0.3358
 0.2468
 0.3332
 0.2876
 0.2964
 0.2385
 0.3451
 0.3081
 0.2760
 0.2533
 0.2576
 0.3092
 0.2950
 0.3089
 0.3113
 0.3475
 0.3172
 0.2474
 0.3371
 0.3450
 0.3189
 0.3150
 0.3008
 0.2694
 0.3730
 0.3235
 0.2988
 0.2812
 0.3245
 0.3630
 0.2843
 0.3533
 0.3451
 0.3244
 0.3524
 0.3118
 0.3429
 0.3215
 0.2748
 0.3287
 0.3656
 0.2901
 0.2523
 0.3284
 0.2523
 0.3426
 0.2851
 0.2918
 0.2497
 0.5159
 0.3026
 0.2743
 0.2379
 0.3524
 0.3394
 0.2264
 0.2652
 0.3759
 0.3777
 0.2459
 0.3046
 0.3067
 0.3775
 0.2976
 0.3552
 0.2696
 0.2649
 0.2872
 0.2985
 0.2867
 0.3676
 0.3494
 0.3823
 0.3246
 0.3567
 0.2662
 0.3357
 0.2935
 0.2987
 0.2664
 0.3019
 0.3175
 0.2436
 0.3274
 0.2764
 0.2466
 0.2876
 0.3060
 0.3157
 0.3329
 0.2984
 0.2961
 0.3309
 0.3729
 0.3238
 0.3491
 0.3342
 0.3037
 0.3578
 0.2849
 0.2827
 0.2809
 0.3249
[torch.FloatTensor of size 256]
), ('layer3.0.bn1.bias', 
-0.0915
 0.0189
-0.1235
-0.0613
-0.1003
-0.1306
-0.1473
-0.1079
-0.2438
-0.1113
 0.1361
-0.1477
 0.0387
-0.0907
 0.0352
-0.1851
-0.1319
-0.1746
-0.0815
-0.1004
-0.3394
-0.1712
-0.0807
-0.1228
-0.2263
-0.1503
-0.2314
-0.2327
-0.0854
-0.0802
-0.0716
-0.0839
-0.0592
 0.0358
-0.0322
-0.2197
 0.0027
-0.1471
-0.0264
-0.1886
-0.2417
-0.1494
-0.1904
-0.1089
-0.2657
-0.1362
-0.0487
-0.1340
-0.0930
-0.0064
-0.1721
-0.1476
-0.1714
 0.0336
-0.1011
-0.1761
-0.1184
-0.0482
-0.3260
-0.1555
-0.0169
-0.2373
-0.1015
-0.1051
-0.2738
-0.1917
-0.0503
-0.1098
 0.1484
-0.2282
-0.0700
-0.1427
-0.1417
-0.3096
-0.2043
 0.0269
-0.0779
-0.0842
-0.0464
-0.1429
-0.3917
 0.0257
-0.1779
-0.0993
-0.0507
-0.2222
-0.0951
-0.0861
-0.0743
-0.1666
-0.2054
-0.1782
-0.1150
-0.2525
-0.0694
-0.0536
-0.0499
-0.0311
 0.1212
-0.0988
-0.1570
-0.3093
-0.0797
-0.0994
-0.1774
-0.0505
 0.0766
-0.0480
-0.1278
-0.0651
-0.1737
 0.0303
-0.1334
-0.2435
-0.0746
-0.0365
-0.1843
-0.0887
-0.1924
-0.1110
-0.1458
-0.0895
-0.0956
-0.2042
-0.1338
-0.0637
-0.0699
-0.1656
-0.1521
-0.1317
-0.0826
-0.2470
-0.1174
-0.1475
-0.0840
-0.0681
-0.1789
 0.0288
-0.0362
-0.3005
-0.1441
-0.0812
-0.0492
-0.0657
-0.1249
-0.1104
 0.0187
-0.1351
-0.1944
-0.0909
 0.2067
-0.1081
-0.2499
-0.0999
 0.0507
-0.1899
-0.0369
-0.1432
 0.1279
-0.1782
-0.1172
-0.0099
 0.0785
-0.0681
-0.0365
-0.1596
-0.1606
-0.0922
-0.1773
-0.1788
 0.0306
-0.1101
-0.1355
-0.2244
-0.0860
-0.1232
-0.0927
-0.1666
-0.1393
-0.0898
-0.0614
-0.1740
-0.2503
-0.0593
-0.1272
-0.1422
-0.0743
-0.2208
-0.2207
-0.2742
-0.1302
-0.0916
-0.1696
-0.2481
-0.1524
 0.0410
-0.1077
 0.0408
-0.1915
-0.0697
-0.1049
-0.0110
-0.3257
-0.1336
-0.1021
 0.0128
-0.2717
-0.1245
 0.0288
-0.1025
-0.2405
-0.1476
 0.1008
-0.0220
-0.0983
-0.4417
-0.0774
-0.3207
-0.0272
-0.0726
-0.0608
-0.0430
-0.0872
-0.1280
-0.1608
-0.1529
-0.1745
-0.1702
-0.0486
-0.1459
-0.0552
-0.0808
-0.0264
-0.0952
-0.1126
-0.0452
-0.0837
-0.0331
 0.0127
-0.0865
-0.1446
-0.0732
-0.2160
-0.0952
-0.1297
-0.2008
-0.2135
-0.2204
-0.2381
-0.1787
-0.1386
-0.1901
-0.0981
-0.0850
-0.0761
-0.0586
[torch.FloatTensor of size 256]
), ('layer3.0.bn1.running_mean', 
-0.1253
-0.2262
-0.4860
-0.1458
-0.6311
 0.0073
-0.0597
 0.0038
-0.1363
-0.2213
-0.3844
-0.5783
-1.2715
-0.4546
-1.4092
-0.4864
 0.2884
-0.7827
 0.3060
-0.3542
-0.5711
-0.7998
 0.0888
-0.1439
-0.6867
-0.8588
-0.5447
 0.2983
-0.1919
 0.1344
-0.6387
-0.4716
 0.6139
-0.0065
 0.0092
-0.7543
-0.3666
-0.1479
-0.7263
-0.3064
-0.3003
-0.4880
-0.3688
-0.3295
-0.1466
-0.6681
-0.1217
-0.5661
-0.7542
-0.4977
-0.1982
-0.7480
 0.2935
-0.5039
-0.4152
-0.1846
-0.0653
-0.3617
 0.0979
-0.0989
-0.8747
-0.6866
-0.2850
-0.1807
-0.7564
 0.4896
-0.4719
-0.3251
 0.2361
-0.2823
-0.5454
-0.5703
-0.3914
-0.7459
-0.3127
 0.4983
-0.4290
 0.0501
-0.1465
-0.6060
 0.3132
-0.3743
-0.5826
-0.3843
-0.1076
-0.5657
-0.3102
 0.3179
-0.7787
-0.0326
-0.4723
-0.5669
-0.0142
-0.5974
-0.3175
-0.9361
-0.1838
 0.1329
-1.0321
-0.0591
-0.4599
-0.5094
 0.2070
-0.0520
 0.1508
-0.8619
-0.0878
-0.8132
-0.3859
-0.2299
-0.6100
-0.2246
-0.3464
-0.9515
 0.0855
 0.3101
-0.4721
-0.4155
 0.0080
-0.1732
-0.6501
-0.6203
-0.1372
-0.1522
-0.2870
-0.4941
 0.0966
 0.5073
-0.2510
-0.3032
-0.3150
-0.5733
-0.0545
-0.3441
-0.7644
-0.2321
-0.7738
-0.1745
 0.2423
-0.3351
-0.1296
-0.5125
-0.1101
-0.8768
-0.2860
-0.3560
-0.1244
-0.2997
-0.1577
-0.3160
-0.1748
 0.5893
 0.1252
-0.2802
-0.0514
-0.6605
-0.1989
-0.1062
-0.0844
-0.6724
-0.0008
-0.2606
-0.3828
-0.1674
-1.4552
-0.4452
-0.2158
-0.5878
-0.4179
-0.6215
 0.1737
-0.5887
-0.5720
 0.0747
-0.6005
-0.3461
-0.3260
-0.3577
-0.0933
-0.3588
-0.3935
-0.9551
-0.9143
-0.2762
-0.3652
-0.1704
-0.2676
-0.2292
-0.3800
-0.4927
-0.2178
-0.3614
-0.1274
-0.5203
-0.5437
 0.0210
-0.6357
-0.5927
-0.1611
-0.1015
-0.4067
-0.4212
-0.2671
-0.3272
-0.4998
 0.0105
-0.3977
-0.4612
-0.0671
 0.1528
-0.1927
-0.4018
-0.5817
-0.3383
-0.5079
-0.6062
-0.2094
 0.0344
 0.0049
-0.0074
-0.8431
-0.8824
-0.3549
-0.2095
-0.4937
-0.2907
-0.4414
-0.4896
 0.0836
-0.9780
-0.4721
-0.1474
-0.3185
-0.2436
-0.1797
-0.0429
-0.2972
-0.4299
-0.3125
-0.3699
-0.4899
-0.0979
-0.7804
-0.3924
 0.0850
-0.5030
-0.6755
-0.2506
-0.4354
-0.2441
 0.0193
-0.3442
-0.6758
-0.4484
-0.1628
-0.6801
[torch.FloatTensor of size 256]
), ('layer3.0.bn1.running_var', 
 0.2509
 0.2989
 0.2810
 0.2616
 0.3038
 0.3614
 0.1749
 0.2615
 0.2315
 0.2593
 0.3199
 0.2039
 0.3937
 0.2819
 0.6928
 0.1669
 0.1971
 0.2347
 0.1798
 0.2584
 0.2045
 0.2247
 0.2575
 0.1896
 0.2243
 0.3290
 0.2262
 0.1629
 0.1750
 0.2162
 0.2686
 0.1990
 0.3028
 0.2474
 0.6300
 0.2747
 0.2340
 0.2184
 0.3476
 0.1966
 0.1739
 0.2011
 0.1882
 0.1917
 0.2349
 0.1796
 0.2018
 0.1950
 0.2186
 0.2595
 0.1522
 0.2088
 0.1380
 0.5258
 0.1659
 0.3283
 0.1931
 0.2347
 0.1449
 0.2613
 0.2720
 0.1855
 0.2469
 0.2337
 0.2525
 0.1487
 0.1740
 0.2101
 0.3507
 0.1668
 0.2851
 0.1874
 0.1725
 0.2619
 0.1903
 0.2774
 0.1875
 0.2584
 0.1635
 0.2693
 0.1709
 0.7093
 0.2264
 0.2439
 0.2717
 0.2020
 0.2420
 0.1979
 0.3249
 0.2325
 0.2174
 0.2400
 0.2201
 0.1914
 0.2311
 0.4723
 0.2749
 0.2033
 0.4373
 0.2124
 0.1956
 0.1570
 0.2497
 0.2723
 0.1928
 0.2726
 0.1942
 0.2862
 0.2731
 0.2348
 0.3259
 0.3079
 0.2799
 0.1865
 0.2416
 0.2262
 0.3502
 0.2169
 0.2371
 0.1750
 0.2822
 0.1983
 0.3979
 0.2380
 0.1798
 0.2661
 0.1640
 0.4260
 0.2032
 0.1764
 0.1802
 0.2821
 0.4783
 0.1895
 0.3361
 0.2009
 0.1541
 0.2021
 0.2365
 0.3530
 0.1833
 0.6131
 0.1840
 0.2772
 0.2735
 0.1799
 0.4005
 0.2144
 0.2677
 0.2665
 0.4213
 0.2373
 0.2408
 0.2575
 0.3893
 0.1723
 0.3173
 0.2014
 0.5098
 0.2254
 0.2103
 0.3155
 0.3065
 0.1814
 0.2512
 0.1665
 0.2078
 0.2352
 0.2161
 0.1674
 0.4302
 0.3045
 0.3518
 0.1620
 0.2234
 0.2028
 0.1523
 0.3315
 0.2086
 0.3005
 0.2760
 0.1988
 0.1683
 0.2111
 0.3077
 0.2803
 0.3045
 0.1773
 0.1797
 0.1470
 0.2122
 0.2147
 0.1688
 0.1913
 0.2067
 0.2444
 0.2609
 0.2750
 0.2597
 0.2373
 0.2216
 0.3981
 0.7746
 0.2015
 0.1734
 0.3637
 0.1748
 0.2495
 0.2457
 0.1559
 0.2741
 0.3765
 0.2767
 0.2841
 0.2553
 0.1582
 0.3328
 0.1996
 0.2284
 0.2720
 0.2520
 0.2724
 0.1931
 0.2924
 0.2629
 0.3760
 0.2206
 0.2616
 0.1907
 0.2821
 0.2752
 0.2303
 0.2730
 0.2340
 0.2235
 0.1466
 0.2869
 0.2763
 0.2823
 0.1843
 0.1804
 0.2244
 0.1840
 0.1446
 0.2126
 0.1792
 0.2546
 0.1661
 0.1881
 0.1667
 0.2371
 0.2523
 0.2260
 0.2728
 0.2028
 0.4802
[torch.FloatTensor of size 256]
), ('layer3.0.conv2.weight', 
( 0 , 0 ,.,.) = 
 -9.2775e-03 -3.3897e-02 -1.1927e-02
 -2.4595e-02 -7.9761e-02 -4.8709e-02
 -4.3490e-02 -8.0118e-02 -6.5252e-02

( 0 , 1 ,.,.) = 
 -2.8918e-02  2.3763e-04 -2.8561e-02
  9.8557e-03  1.0253e-02 -1.7677e-02
 -1.0684e-02  2.8071e-03 -1.2483e-02

( 0 , 2 ,.,.) = 
 -1.4730e-02  2.2622e-02  4.4314e-03
  1.5512e-02  1.0901e-02 -4.0294e-03
 -2.0756e-02 -1.8048e-02 -1.7258e-02
    ... 

( 0 ,253,.,.) = 
  3.1821e-04 -4.0924e-03 -7.9885e-04
 -2.1664e-02 -2.2339e-02 -2.9870e-02
  1.0453e-02  3.4707e-03 -1.1426e-02

( 0 ,254,.,.) = 
  9.6516e-03  1.8361e-02  3.7035e-02
  3.7147e-03  1.0427e-02  1.5162e-02
  8.4325e-03  1.8343e-02  3.0159e-02

( 0 ,255,.,.) = 
  1.3859e-03  8.4181e-03  9.7185e-03
  2.6455e-02  4.1474e-02  5.5292e-02
  1.6905e-02  6.1027e-02  5.6296e-02
      ⋮  

( 1 , 0 ,.,.) = 
  1.1743e-02  1.6508e-02  5.1232e-03
  2.9441e-02  2.0441e-02  2.1624e-02
  7.8852e-03  1.3290e-02  1.1664e-02

( 1 , 1 ,.,.) = 
 -1.5315e-02 -2.1319e-02 -8.9703e-03
 -2.9171e-02 -5.1600e-02 -4.3605e-02
 -4.5486e-03 -3.7239e-02 -4.2013e-02

( 1 , 2 ,.,.) = 
  3.0217e-04  3.9781e-02 -1.4889e-04
  1.2860e-02  3.3156e-02  1.6254e-02
 -9.5886e-03 -5.6529e-03 -1.6966e-02
    ... 

( 1 ,253,.,.) = 
  4.4662e-02  8.1982e-03  1.6867e-02
 -6.6190e-03 -3.7080e-02 -5.9346e-03
 -2.3913e-02 -6.0699e-02 -2.8947e-02

( 1 ,254,.,.) = 
 -5.7020e-03 -4.2262e-02 -2.1947e-02
 -2.2780e-02 -3.1428e-02 -5.8322e-02
 -1.9598e-02 -5.2995e-02 -4.8502e-02

( 1 ,255,.,.) = 
  6.4948e-03  3.2666e-03  9.3442e-03
  1.0466e-03 -4.9306e-03 -1.1003e-02
 -1.5981e-02 -1.0119e-02 -1.4555e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -6.1149e-03 -6.6849e-03 -6.9256e-03
 -5.1692e-03 -8.9064e-03 -1.4313e-02
 -1.1450e-02 -1.7125e-02 -2.3729e-02

( 2 , 1 ,.,.) = 
  3.9899e-02  1.6684e-02  2.0991e-02
  1.6498e-02 -2.6236e-02 -1.1630e-02
  5.9030e-03 -2.0597e-02 -1.5280e-02

( 2 , 2 ,.,.) = 
  6.0228e-03  2.4200e-02  2.0716e-02
  4.9551e-03 -6.1590e-03  1.4790e-02
  9.8595e-03 -2.7931e-02 -5.4261e-03
    ... 

( 2 ,253,.,.) = 
 -9.7426e-03 -1.6989e-03 -1.0106e-02
 -6.1351e-04  4.3355e-02  3.8143e-02
  3.7943e-03  4.4980e-02  3.9165e-02

( 2 ,254,.,.) = 
  1.3395e-02  6.9187e-03  1.9631e-02
  6.7533e-03  2.5027e-02  1.5162e-02
  1.7857e-03 -4.3971e-03  3.7016e-03

( 2 ,255,.,.) = 
 -1.7440e-02 -1.6260e-02 -2.4000e-02
 -1.9716e-02 -1.7364e-02 -1.7828e-02
 -3.0010e-02 -1.3697e-02 -2.1068e-02
...     
      ⋮  

(253, 0 ,.,.) = 
  6.5624e-03  6.0837e-03  2.8446e-02
 -1.2967e-02 -5.0910e-02 -2.0435e-02
 -1.5419e-02 -1.4899e-02 -1.8056e-02

(253, 1 ,.,.) = 
  1.2341e-02  3.2479e-02  2.2650e-02
 -4.2432e-03 -1.8113e-02  2.2224e-03
  2.9012e-03 -1.7405e-02  3.1869e-03

(253, 2 ,.,.) = 
 -1.0992e-02  1.1080e-02 -1.4198e-02
  8.2258e-03  3.0135e-02  4.1601e-02
  6.0791e-04  1.6776e-04  2.1328e-02
    ... 

(253,253,.,.) = 
 -7.5068e-04  2.6565e-02  1.1820e-02
 -1.5916e-02 -7.4243e-03 -5.1214e-03
  4.1732e-03 -6.8548e-03 -7.3191e-03

(253,254,.,.) = 
 -6.9767e-03  9.7686e-04  1.8935e-03
  6.0631e-03  5.0983e-02 -3.4937e-03
 -8.1496e-03 -3.0339e-02 -1.7409e-02

(253,255,.,.) = 
 -1.0048e-02  3.2093e-04 -1.1435e-03
 -1.5435e-03 -2.9689e-02 -1.9539e-02
 -9.6000e-04  4.8948e-03  1.5117e-02
      ⋮  

(254, 0 ,.,.) = 
  1.6080e-02  1.2594e-02  5.4767e-03
 -1.3241e-02 -1.9564e-02 -2.0807e-02
 -7.7261e-03 -2.3040e-02 -2.0197e-02

(254, 1 ,.,.) = 
 -1.8947e-03  5.3025e-02  1.3421e-02
  2.7344e-03  2.4908e-02  1.6726e-02
 -1.9196e-02 -1.8768e-02 -1.9954e-02

(254, 2 ,.,.) = 
  8.0703e-03  2.9987e-02  5.7642e-04
  3.5938e-03  2.5408e-02 -1.0444e-02
 -9.6803e-04 -1.9317e-02 -1.2085e-02
    ... 

(254,253,.,.) = 
  1.6295e-02  2.5060e-02  2.8950e-02
 -7.3188e-03 -1.4100e-03  1.2378e-02
 -2.1144e-02 -3.4673e-02 -1.9507e-02

(254,254,.,.) = 
  1.6469e-02  5.1930e-02  4.9364e-02
  5.8284e-03  1.9868e-02  3.6292e-02
 -4.9320e-03 -1.6470e-02 -1.2967e-02

(254,255,.,.) = 
 -1.0214e-02 -3.0802e-02 -3.4004e-02
  5.5274e-03 -1.0925e-02  4.6995e-04
  3.8212e-02  2.0936e-02  3.2566e-02
      ⋮  

(255, 0 ,.,.) = 
  1.8364e-02 -3.0699e-03  1.0348e-02
 -7.2351e-03 -1.2742e-03 -6.9527e-03
  2.1686e-02  1.1490e-03 -3.2707e-03

(255, 1 ,.,.) = 
 -1.6594e-02  1.5176e-04 -9.1776e-03
  1.5036e-02  5.8408e-02  2.1840e-02
 -1.3606e-02  1.8126e-02  1.6354e-02

(255, 2 ,.,.) = 
  2.1872e-02  3.1581e-02  1.8289e-02
 -2.1028e-03 -1.5633e-02  2.0265e-02
  5.2924e-03  4.8438e-04  1.5701e-02
    ... 

(255,253,.,.) = 
  4.4712e-03 -2.4757e-03  1.7267e-03
 -5.2339e-03 -8.8001e-03  1.3738e-02
 -1.0695e-02  1.0347e-03  1.6962e-02

(255,254,.,.) = 
 -5.9934e-03 -3.6803e-02  3.0996e-03
  1.0224e-02  2.9117e-02 -7.3036e-04
  9.9051e-03  5.9974e-02  2.7242e-02

(255,255,.,.) = 
 -9.1759e-03 -1.8297e-02  6.2411e-03
 -3.1871e-02 -2.9350e-02 -1.4883e-02
 -1.4808e-02 -1.2348e-02 -2.3609e-02
[torch.FloatTensor of size 256x256x3x3]
), ('layer3.0.bn2.weight', 
 0.3212
 0.2124
 0.2661
 0.3594
 0.2785
 0.2582
 0.3108
 0.3096
 0.3348
 0.2992
 0.2545
 0.2458
 0.3133
 0.4159
 0.2997
 0.3070
 0.3135
 0.4418
 0.3743
 0.2570
 0.2943
 0.3078
 0.2738
 0.3948
 0.2928
 0.3572
 0.3435
 0.5379
 0.4243
 0.3908
 0.2745
 0.2798
 0.3217
 0.1956
 0.2751
 0.3187
 0.3507
 0.2751
 0.1919
 0.3307
 0.2850
 0.3038
 0.2179
 0.2652
 0.2944
 0.2138
 0.2184
 0.2948
 0.3262
 0.3759
 0.2557
 0.3796
 0.2950
 0.3386
 0.3243
 0.3070
 0.3331
 0.2302
 0.3036
 0.3377
 0.2922
 0.2204
 0.3267
 0.3198
 0.4023
 0.2987
 0.4860
 0.2854
 0.2716
 0.4341
 0.2834
 0.2296
 0.2507
 0.3120
 0.3673
 0.3244
 0.3380
 0.3272
 0.2868
 0.2877
 0.3210
 0.2332
 0.3379
 0.2767
 0.2942
 0.2672
 0.4401
 0.2908
 0.3771
 0.2789
 0.3056
 0.3276
 0.3871
 0.2453
 0.2559
 0.2783
 0.3168
 0.3410
 0.2318
 0.3577
 0.5036
 0.3557
 0.2475
 0.1852
 0.2273
 0.3602
 0.2919
 0.3928
 0.4423
 0.2052
 0.2524
 0.2189
 0.4113
 0.3611
 0.4284
 0.2333
 0.3504
 0.7001
 0.3754
 0.2874
 0.3702
 0.3174
 0.3640
 0.2889
 0.4155
 0.2479
 0.2898
 0.3740
 0.4926
 0.2808
 0.2388
 0.3473
 0.1868
 0.2837
 0.3090
 0.3614
 0.2797
 0.6871
 0.2854
 0.2937
 0.3128
 0.4863
 0.2193
 0.2871
 0.2554
 0.4175
 0.3044
 0.3230
 0.3343
 0.4947
 0.3924
 0.2264
 0.2657
 0.4193
 0.3483
 0.3551
 0.2877
 0.2559
 0.2459
 0.2775
 0.3842
 0.2949
 0.3510
 0.1926
 0.3101
 0.3417
 0.3931
 0.3918
 0.3239
 0.2851
 0.4583
 0.2669
 0.2663
 0.4433
 0.3221
 0.3655
 0.3336
 0.4393
 0.3970
 0.3727
 0.3523
 0.3586
 0.3286
 0.4181
 0.2955
 0.3050
 0.2988
 0.4320
 0.2309
 0.3826
 0.2270
 0.2228
 0.3206
 0.3273
 0.2627
 0.3087
 0.2920
 0.2328
 0.4144
 0.4075
 0.3264
 0.3583
 0.3014
 0.3150
 0.4438
 0.4042
 0.2028
 0.3855
 0.2570
 0.2361
 0.2343
 0.3312
 0.2303
 0.3744
 0.4727
 0.3601
 0.2754
 0.1987
 0.3027
 0.3427
 0.2994
 0.2533
 0.2639
 0.3460
 0.3847
 0.4368
 0.3786
 0.3123
 0.2591
 0.3979
 0.2577
 0.3131
 0.2934
 0.3027
 0.2942
 0.2266
 0.2806
 0.2977
 0.1858
 0.2788
 0.2504
 0.3948
 0.3496
 0.2429
 0.2155
 0.2683
 0.4100
 0.3495
 0.4243
 0.2627
 0.3329
 0.2849
 0.3924
 0.3728
 0.2655
 0.3338
[torch.FloatTensor of size 256]
), ('layer3.0.bn2.bias', 
-0.0264
 0.0995
-0.0068
-0.0877
 0.0078
 0.0407
-0.0307
 0.0060
 0.0017
 0.0478
 0.0630
 0.0358
-0.0504
 0.0214
-0.0090
-0.0337
-0.0455
-0.1924
-0.0676
 0.0775
-0.0340
-0.0799
 0.1314
-0.1273
-0.0628
-0.0055
-0.0915
-0.1757
-0.0083
-0.0945
 0.0025
-0.0319
-0.0158
 0.1437
-0.0035
 0.0108
-0.0511
 0.0358
 0.0878
-0.0452
-0.0458
 0.0147
 0.0687
 0.0168
-0.0477
 0.0568
 0.0460
-0.0507
 0.0059
-0.1034
 0.0103
-0.1052
-0.0166
-0.0192
-0.0345
 0.0201
-0.1362
 0.0396
-0.0088
-0.0108
-0.0298
 0.0721
-0.0669
-0.0094
-0.0310
-0.0267
-0.1418
 0.1190
 0.0669
-0.2137
 0.0427
 0.0478
 0.0339
 0.0001
-0.1482
-0.0237
-0.0743
-0.0684
-0.0201
 0.0147
-0.0396
 0.0194
-0.0696
-0.0558
 0.0080
 0.0236
-0.2578
 0.0064
-0.1004
 0.0280
 0.0152
-0.0484
-0.1536
 0.1049
 0.0499
 0.0657
-0.0541
 0.0077
 0.0941
-0.0200
-0.2356
-0.0623
 0.0334
 0.1102
 0.0770
-0.0325
 0.0481
-0.1499
-0.1650
 0.1230
 0.0712
 0.0589
-0.0482
-0.0972
-0.1860
 0.0853
-0.0516
-0.3080
-0.0604
-0.0771
-0.2728
 0.0289
-0.1328
 0.0173
-0.0392
 0.0542
-0.0372
-0.1528
-0.1766
 0.0839
 0.0693
-0.0826
 0.1118
-0.0508
-0.0448
-0.0375
 0.0304
-0.3782
 0.0149
 0.0068
-0.0521
-0.2950
 0.0899
 0.0296
 0.0199
-0.0835
-0.0964
-0.0238
 0.0349
-0.2663
-0.1618
 0.0736
 0.0276
-0.1109
-0.0103
-0.0975
 0.0140
 0.0108
 0.0784
 0.0131
-0.0395
 0.0248
-0.0774
-0.0284
 0.0104
-0.0423
-0.1663
-0.0949
-0.0343
 0.0455
-0.3000
-0.0069
 0.0141
-0.2615
-0.0736
-0.1063
-0.0105
-0.0712
-0.1034
-0.0298
-0.1428
-0.0517
-0.0571
-0.0544
-0.0423
-0.0085
 0.0159
-0.0654
-0.0613
-0.1450
 0.0399
 0.0816
-0.0078
-0.0341
 0.0320
-0.0448
-0.0703
 0.1021
-0.1799
-0.2117
-0.0598
-0.1160
 0.0393
-0.0454
-0.1845
-0.1085
 0.0558
-0.0636
 0.0168
 0.0002
 0.0799
-0.0672
 0.0798
-0.0040
-0.1902
 0.0200
 0.0732
 0.1032
-0.0264
 0.0240
-0.0442
 0.0229
 0.0234
-0.0235
 0.0105
-0.2149
-0.1281
-0.0183
-0.0006
-0.0516
 0.0566
-0.0543
 0.0141
-0.0499
 0.0673
 0.0517
-0.0040
 0.0351
 0.0828
 0.0100
 0.0592
-0.2043
-0.0762
 0.0414
 0.0775
 0.0760
-0.1592
-0.0836
-0.1663
 0.0023
-0.0685
 0.0381
-0.0987
-0.0203
 0.0154
-0.1055
[torch.FloatTensor of size 256]
), ('layer3.0.bn2.running_mean', 
-0.1898
-0.4822
-0.0088
 0.0064
-0.3401
-0.1041
-0.1626
-0.2259
-0.1119
-0.3254
-0.0254
-0.2351
-0.0790
-0.3306
-0.0956
-0.0415
-0.3207
-0.0037
-0.1830
-0.1295
-0.2069
-0.2632
-0.1351
-0.1295
-0.2527
-0.0104
-0.0875
-0.3375
-0.5001
-0.1199
-0.1989
-0.2964
-0.1924
-0.2904
-0.0091
-0.0104
 0.0738
-0.1760
 0.0442
-0.2232
 0.0376
-0.1235
-0.0065
-0.2524
-0.0120
 0.0555
 0.1533
-0.1421
-0.1160
-0.0893
-0.1547
-0.1615
 0.0208
-0.3496
-0.1477
-0.6155
-0.1364
-0.0405
-0.3246
-0.1697
 0.1694
-0.0662
-0.2076
-0.3969
-0.2936
 0.1080
-0.2798
-0.0859
-0.0713
-0.3520
-0.0642
-0.1993
 0.0202
-0.3808
-0.0833
-0.1321
-0.3009
-0.1800
 0.0824
-0.0532
 0.1538
 0.1777
 0.1837
-0.1972
-0.0083
-0.2135
-0.3881
-0.1686
-0.1149
 0.2055
-0.2054
-0.1345
-0.1579
-0.1801
-0.2133
-0.2940
-0.2087
-0.0419
-0.2158
-0.0453
-0.2935
-0.1574
 0.0310
 0.0154
-0.1013
 0.0401
-0.4071
-0.2852
-0.2954
-0.2261
-0.1083
 0.1359
-0.6190
-0.1957
-0.2018
-0.0181
-0.3157
-0.0974
-0.2188
 0.0105
-0.0686
-0.2937
-0.3168
-0.1745
 0.0286
-0.1721
-0.2043
-0.2114
-0.2032
-0.2170
 0.0459
 0.2110
-0.1009
-0.0560
 0.1501
-0.1713
 0.0171
-0.2029
-0.2175
 0.0836
-0.0215
-0.3423
-0.1450
 0.1632
-0.1679
-0.1672
-0.1634
-0.3611
-0.0664
-0.3015
-0.1192
 0.0192
-0.1420
-0.2852
-0.3039
-0.0897
-0.0659
-0.0240
-0.2212
 0.0306
-0.0083
-0.3773
-0.2584
 0.0030
-0.0981
-0.2602
-0.1212
-0.2094
-0.1398
-0.1795
-0.1467
 0.0102
-0.1396
-0.2732
-0.1427
-0.1136
-0.1668
-0.3346
-0.3108
-0.0469
-0.0733
-0.3828
-0.1082
-0.0854
-0.1564
-0.1707
-0.1396
 0.0373
 0.2787
-0.2415
-0.1196
-0.1453
-0.2642
-0.1012
 0.0470
-0.1133
 0.1593
-0.0566
-0.1868
-0.2362
 0.0922
 0.1657
 0.1560
-0.1998
-0.1939
 0.1154
 0.0537
-0.2192
-0.0997
-0.2332
-0.1498
 0.0317
 0.0793
-0.2177
-0.2654
-0.2278
-0.0419
 0.0142
-0.2111
-0.0224
 0.0953
-0.1628
 0.0981
-0.1220
-0.0360
-0.3884
 0.1147
 0.0069
-0.2821
-0.6060
-0.2243
 0.0177
-0.0736
-0.1372
-0.0436
 0.1616
-0.1906
-0.2774
 0.1136
 0.1891
 0.0610
 0.0161
-0.1046
-0.0830
 0.0079
-0.0963
-0.1956
-0.1445
-0.1591
 0.0612
-0.2552
 0.0082
 0.1980
-0.2280
-0.1163
-0.1644
[torch.FloatTensor of size 256]
), ('layer3.0.bn2.running_var', 
 0.1079
 0.1131
 0.0924
 0.0718
 0.0979
 0.1616
 0.0678
 0.0953
 0.1568
 0.1489
 0.1486
 0.1188
 0.1037
 0.3279
 0.0749
 0.0980
 0.0845
 0.0636
 0.0813
 0.1006
 0.0732
 0.0642
 0.1933
 0.0824
 0.0592
 0.1489
 0.0738
 0.0896
 0.2559
 0.1517
 0.0685
 0.1045
 0.1164
 0.1185
 0.0899
 0.1024
 0.0694
 0.1614
 0.0858
 0.0782
 0.0630
 0.1314
 0.1087
 0.1018
 0.0709
 0.0973
 0.0638
 0.0795
 0.0911
 0.0772
 0.0806
 0.0986
 0.1304
 0.1646
 0.1006
 0.1233
 0.0703
 0.1033
 0.1296
 0.2374
 0.0908
 0.1296
 0.0678
 0.1330
 0.2067
 0.0860
 0.1207
 0.1573
 0.1656
 0.0776
 0.1666
 0.1887
 0.1168
 0.1144
 0.0464
 0.1130
 0.0565
 0.0652
 0.1031
 0.1098
 0.0761
 0.1014
 0.0627
 0.0624
 0.0985
 0.1319
 0.0639
 0.0881
 0.0646
 0.1989
 0.2018
 0.0689
 0.0622
 0.1239
 0.1009
 0.1935
 0.0756
 0.1753
 0.1422
 0.1525
 0.0735
 0.1037
 0.0774
 0.0733
 0.1340
 0.0680
 0.1867
 0.0649
 0.0885
 0.1279
 0.1967
 0.1160
 0.1611
 0.0786
 0.0696
 0.1040
 0.1400
 0.0959
 0.0994
 0.0631
 0.0447
 0.1600
 0.0627
 0.1007
 0.2316
 0.1074
 0.0695
 0.0526
 0.1179
 0.2217
 0.0784
 0.0968
 0.0907
 0.0670
 0.0758
 0.0821
 0.1580
 0.1111
 0.0929
 0.0876
 0.0962
 0.0588
 0.0759
 0.0939
 0.0777
 0.1199
 0.0678
 0.1432
 0.0874
 0.0669
 0.0881
 0.1013
 0.1303
 0.0878
 0.1138
 0.0809
 0.0946
 0.0940
 0.1462
 0.1615
 0.0843
 0.1210
 0.0923
 0.0445
 0.0966
 0.1024
 0.0637
 0.0707
 0.0742
 0.1396
 0.0499
 0.1179
 0.0688
 0.0487
 0.0878
 0.0864
 0.0791
 0.1722
 0.0996
 0.1252
 0.0556
 0.0761
 0.0729
 0.1205
 0.0550
 0.1080
 0.1323
 0.2279
 0.0527
 0.0671
 0.0955
 0.1127
 0.1290
 0.0872
 0.0926
 0.0790
 0.0589
 0.1320
 0.0604
 0.0704
 0.0905
 0.0549
 0.1623
 0.0629
 0.0672
 0.0640
 0.0800
 0.1275
 0.1319
 0.0743
 0.1381
 0.0659
 0.1329
 0.1962
 0.0738
 0.1416
 0.1639
 0.0966
 0.0992
 0.0786
 0.0766
 0.0907
 0.0760
 0.1000
 0.1351
 0.0603
 0.0603
 0.0767
 0.0671
 0.1331
 0.1200
 0.0779
 0.0832
 0.0619
 0.1206
 0.0986
 0.0742
 0.0960
 0.0676
 0.0902
 0.1195
 0.0415
 0.0926
 0.1191
 0.1055
 0.1332
 0.0862
 0.0865
 0.0650
 0.0798
 0.0661
 0.1010
 0.1038
 0.1005
 0.0945
 0.0611
[torch.FloatTensor of size 256]
), ('layer3.0.downsample.0.weight', 
( 0 , 0 ,.,.) = 
  8.0862e-03

( 0 , 1 ,.,.) = 
 -1.9208e-02

( 0 , 2 ,.,.) = 
 -1.7272e-02
    ... 

( 0 ,125,.,.) = 
 -1.2758e-02

( 0 ,126,.,.) = 
  2.5496e-03

( 0 ,127,.,.) = 
  5.3547e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -1.4284e-02

( 1 , 1 ,.,.) = 
 -5.5428e-02

( 1 , 2 ,.,.) = 
 -3.4568e-02
    ... 

( 1 ,125,.,.) = 
  2.7476e-02

( 1 ,126,.,.) = 
  3.5964e-02

( 1 ,127,.,.) = 
  2.3994e-02
      ⋮  

( 2 , 0 ,.,.) = 
  7.6148e-03

( 2 , 1 ,.,.) = 
  2.0725e-02

( 2 , 2 ,.,.) = 
 -1.0066e-02
    ... 

( 2 ,125,.,.) = 
 -2.7756e-02

( 2 ,126,.,.) = 
  6.3956e-03

( 2 ,127,.,.) = 
 -2.2016e-03
...     
      ⋮  

(253, 0 ,.,.) = 
  3.3605e-02

(253, 1 ,.,.) = 
 -4.2383e-02

(253, 2 ,.,.) = 
  2.2568e-02
    ... 

(253,125,.,.) = 
 -3.3004e-02

(253,126,.,.) = 
 -9.1010e-04

(253,127,.,.) = 
 -1.7735e-02
      ⋮  

(254, 0 ,.,.) = 
 -1.1416e-02

(254, 1 ,.,.) = 
 -1.8309e-02

(254, 2 ,.,.) = 
  7.6073e-03
    ... 

(254,125,.,.) = 
  1.5128e-02

(254,126,.,.) = 
  3.3239e-02

(254,127,.,.) = 
  2.0724e-04
      ⋮  

(255, 0 ,.,.) = 
  6.2636e-03

(255, 1 ,.,.) = 
 -2.0036e-02

(255, 2 ,.,.) = 
  1.0343e-03
    ... 

(255,125,.,.) = 
 -1.9124e-02

(255,126,.,.) = 
  4.5483e-02

(255,127,.,.) = 
  7.8252e-03
[torch.FloatTensor of size 256x128x1x1]
), ('layer3.0.downsample.1.weight', 
 0.0674
 0.0514
 0.0385
 0.1692
 0.0604
 0.0460
 0.1209
 0.1110
 0.0418
 0.0387
 0.0442
 0.0707
 0.0790
 0.1094
 0.0959
 0.0544
 0.1032
 0.2190
 0.0459
 0.0372
 0.1410
 0.0587
 0.0360
 0.0955
 0.1657
 0.1024
 0.1417
 0.0580
 0.0536
 0.0716
 0.0865
 0.1110
 0.0511
 0.0515
 0.0809
 0.1154
 0.0777
 0.0449
 0.0490
 0.1056
 0.1457
 0.0744
 0.0530
 0.0600
 0.1026
 0.0486
 0.0408
 0.1312
 0.0639
 0.1062
 0.0915
 0.1476
 0.0900
 0.0742
 0.1069
 0.0776
 0.1423
 0.0495
 0.0974
 0.0661
 0.1292
 0.0548
 0.1145
 0.0950
 0.0921
 0.1579
 0.0496
 0.0236
 0.0398
 0.0935
 0.0291
 0.0653
 0.0885
 0.1190
 0.1692
 0.0692
 0.1316
 0.0606
 0.0480
 0.0654
 0.1082
 0.0624
 0.1103
 0.1106
 0.1076
 0.0400
 0.0723
 0.0947
 0.0662
 0.0464
 0.0444
 0.1727
 0.0921
 0.0345
 0.0451
 0.0374
 0.0940
 0.0818
 0.0397
 0.0452
 0.0985
 0.1095
 0.1072
 0.0506
 0.0444
 0.0755
 0.0420
 0.1046
 0.1172
 0.0447
 0.0459
 0.0409
 0.0539
 0.1036
 0.0741
 0.0311
 0.1086
 0.1746
 0.0777
 0.0689
 0.1100
 0.0489
 0.1048
 0.1097
 0.1025
 0.0448
 0.0675
 0.0707
 0.1364
 0.0438
 0.0346
 0.1769
 0.0667
 0.1155
 0.0628
 0.0873
 0.0406
 0.2890
 0.0703
 0.0428
 0.1173
 0.1049
 0.0611
 0.0469
 0.0400
 0.0744
 0.1003
 0.1012
 0.0599
 0.1078
 0.1512
 0.0322
 0.0430
 0.0977
 0.0951
 0.0838
 0.0958
 0.0448
 0.0263
 0.0425
 0.1154
 0.0771
 0.1781
 0.0300
 0.0699
 0.0724
 0.1600
 0.0893
 0.1130
 0.0534
 0.1359
 0.0375
 0.0809
 0.1145
 0.1232
 0.0942
 0.0880
 0.0346
 0.0996
 0.0461
 0.0694
 0.0630
 0.1590
 0.0509
 0.1254
 0.0590
 0.0744
 0.1084
 0.0514
 0.0931
 0.0848
 0.0240
 0.0279
 0.0993
 0.0612
 0.0599
 0.1095
 0.0508
 0.0658
 0.1162
 0.0833
 0.1651
 0.0505
 0.1231
 0.1228
 0.1038
 0.0369
 0.0756
 0.0415
 0.1192
 0.0292
 0.0839
 0.0577
 0.0951
 0.0944
 0.0309
 0.0390
 0.0604
 0.0672
 0.0501
 0.0383
 0.0946
 0.0958
 0.0501
 0.0243
 0.1074
 0.1908
 0.0693
 0.1376
 0.1151
 0.0329
 0.0647
 0.0616
 0.1106
 0.0358
 0.0721
 0.0851
 0.0375
 0.0368
 0.0947
 0.0464
 0.1666
 0.1049
 0.0755
 0.0398
 0.0249
 0.1528
 0.1167
 0.0886
 0.0540
 0.0726
 0.0736
 0.0797
 0.0854
 0.0609
 0.1263
[torch.FloatTensor of size 256]
), ('layer3.0.downsample.1.bias', 
-0.0264
 0.0995
-0.0068
-0.0877
 0.0078
 0.0407
-0.0307
 0.0060
 0.0017
 0.0478
 0.0630
 0.0358
-0.0504
 0.0214
-0.0090
-0.0337
-0.0455
-0.1924
-0.0676
 0.0775
-0.0340
-0.0799
 0.1314
-0.1273
-0.0628
-0.0055
-0.0915
-0.1757
-0.0083
-0.0945
 0.0025
-0.0319
-0.0158
 0.1437
-0.0035
 0.0108
-0.0511
 0.0358
 0.0878
-0.0452
-0.0458
 0.0147
 0.0687
 0.0168
-0.0477
 0.0568
 0.0460
-0.0507
 0.0059
-0.1034
 0.0103
-0.1052
-0.0166
-0.0192
-0.0345
 0.0201
-0.1362
 0.0396
-0.0088
-0.0108
-0.0298
 0.0721
-0.0669
-0.0094
-0.0310
-0.0267
-0.1418
 0.1190
 0.0669
-0.2137
 0.0427
 0.0478
 0.0339
 0.0001
-0.1482
-0.0237
-0.0743
-0.0684
-0.0201
 0.0147
-0.0396
 0.0194
-0.0696
-0.0558
 0.0080
 0.0236
-0.2578
 0.0064
-0.1004
 0.0280
 0.0152
-0.0484
-0.1536
 0.1049
 0.0499
 0.0657
-0.0541
 0.0077
 0.0941
-0.0200
-0.2356
-0.0623
 0.0334
 0.1102
 0.0770
-0.0325
 0.0481
-0.1499
-0.1650
 0.1230
 0.0712
 0.0589
-0.0482
-0.0972
-0.1860
 0.0853
-0.0516
-0.3080
-0.0604
-0.0771
-0.2728
 0.0289
-0.1328
 0.0173
-0.0392
 0.0542
-0.0372
-0.1528
-0.1766
 0.0839
 0.0693
-0.0826
 0.1118
-0.0508
-0.0448
-0.0375
 0.0304
-0.3782
 0.0149
 0.0068
-0.0521
-0.2950
 0.0899
 0.0296
 0.0199
-0.0835
-0.0964
-0.0238
 0.0349
-0.2663
-0.1618
 0.0736
 0.0276
-0.1109
-0.0103
-0.0975
 0.0140
 0.0108
 0.0784
 0.0131
-0.0395
 0.0248
-0.0774
-0.0284
 0.0104
-0.0423
-0.1663
-0.0949
-0.0343
 0.0455
-0.3000
-0.0069
 0.0141
-0.2615
-0.0736
-0.1063
-0.0105
-0.0712
-0.1034
-0.0298
-0.1428
-0.0517
-0.0571
-0.0544
-0.0423
-0.0085
 0.0159
-0.0654
-0.0613
-0.1450
 0.0399
 0.0816
-0.0078
-0.0341
 0.0320
-0.0448
-0.0703
 0.1021
-0.1799
-0.2117
-0.0598
-0.1160
 0.0393
-0.0454
-0.1845
-0.1085
 0.0558
-0.0636
 0.0168
 0.0002
 0.0799
-0.0672
 0.0798
-0.0040
-0.1902
 0.0200
 0.0732
 0.1032
-0.0264
 0.0240
-0.0442
 0.0229
 0.0234
-0.0235
 0.0105
-0.2149
-0.1281
-0.0183
-0.0006
-0.0516
 0.0566
-0.0543
 0.0141
-0.0499
 0.0673
 0.0517
-0.0040
 0.0351
 0.0828
 0.0100
 0.0592
-0.2043
-0.0762
 0.0414
 0.0775
 0.0760
-0.1592
-0.0836
-0.1663
 0.0023
-0.0685
 0.0381
-0.0987
-0.0203
 0.0154
-0.1055
[torch.FloatTensor of size 256]
), ('layer3.0.downsample.1.running_mean', 
-0.1077
-0.1229
-0.0681
-0.1930
-0.0571
-0.0224
-0.0338
-0.2437
-0.0447
 0.0452
 0.0008
 0.0606
-0.0686
-0.0411
 0.0435
-0.0873
-0.2157
-0.1593
-0.0157
-0.0698
-0.1796
-0.0204
 0.0443
-0.1573
-0.0407
-0.1830
 0.0180
-0.0895
-0.0434
-0.2033
-0.0171
 0.1442
-0.0797
-0.1848
-0.0201
-0.0438
-0.1435
-0.0157
 0.0630
-0.0223
-0.1470
-0.0833
-0.1568
 0.0180
 0.0083
 0.1125
-0.0936
 0.0647
-0.1352
-0.1372
 0.1363
-0.1031
-0.1675
-0.2070
-0.0078
-0.0178
 0.1123
-0.0876
-0.1877
 0.0247
-0.2548
-0.1413
-0.0916
-0.1613
 0.0087
-0.2045
-0.0420
-0.0763
-0.0522
-0.0029
-0.0424
 0.1541
 0.0664
-0.0733
-0.0935
-0.0226
-0.1797
 0.0129
 0.0465
-0.1008
-0.0652
 0.0088
-0.0120
 0.0576
-0.0571
-0.0667
-0.0228
-0.0880
-0.0192
 0.0915
 0.0212
-0.2866
-0.1851
 0.0631
-0.0325
 0.0106
-0.0163
-0.1375
-0.0208
 0.0400
 0.0382
-0.1582
-0.0242
-0.0104
-0.0253
-0.0071
-0.0822
-0.0029
 0.0168
-0.1328
-0.0639
 0.0832
-0.0666
-0.0080
-0.0459
 0.0450
-0.1013
-0.0630
-0.0629
-0.1361
-0.0500
-0.0488
 0.1090
-0.0700
-0.0801
-0.1030
-0.0278
-0.1242
-0.0585
-0.0263
-0.0371
-0.0678
-0.1683
 0.0122
 0.0382
-0.0072
-0.0424
-0.0864
-0.0058
 0.0969
-0.2232
 0.0251
-0.0298
-0.0126
 0.0531
-0.2009
-0.2212
-0.0022
 0.0396
-0.0029
-0.1377
 0.0226
 0.0195
-0.1747
 0.0619
-0.1538
-0.0896
 0.0758
-0.0461
 0.0011
-0.0787
-0.0877
-0.2203
-0.0431
 0.0743
-0.1289
-0.0960
-0.0841
 0.0581
-0.1059
-0.1513
-0.0834
 0.0357
-0.0917
 0.0641
 0.0595
-0.1210
-0.0276
 0.0376
-0.0100
-0.1370
-0.0962
-0.2814
-0.1033
-0.0437
-0.0338
-0.0591
-0.0691
-0.0883
-0.0485
 0.0748
-0.0378
-0.0478
 0.0189
-0.0546
-0.0145
 0.0332
-0.0593
 0.0225
-0.1374
-0.1181
 0.0559
 0.0222
-0.0021
-0.0954
-0.0417
 0.0799
-0.1447
-0.0297
-0.0955
 0.0598
 0.0732
-0.0074
 0.0402
-0.0222
 0.0747
 0.0112
 0.1270
-0.0274
-0.0054
 0.0149
-0.0263
-0.0373
-0.0971
 0.0749
-0.1377
-0.1877
-0.0638
-0.1487
-0.0099
-0.0275
 0.0011
-0.0404
 0.0556
-0.1120
-0.1673
 0.0402
-0.1795
 0.0676
 0.0220
-0.0813
 0.0919
-0.0402
 0.0192
 0.0033
-0.0220
-0.1673
-0.1087
-0.1025
 0.0476
-0.1374
 0.0058
-0.0772
-0.0445
 0.0144
-0.1149
[torch.FloatTensor of size 256]
), ('layer3.0.downsample.1.running_var', 
1.00000e-02 *
  1.3212
  1.3382
  0.6095
  2.3173
  1.0613
  1.3040
  1.8071
  2.2225
  0.5863
  0.8064
  0.9384
  2.0050
  1.3193
  4.3016
  1.6614
  0.8651
  1.6540
  2.5693
  0.8004
  0.5019
  2.7886
  0.3852
  0.7347
  1.5154
  2.1317
  2.9001
  2.1060
  0.6044
  1.1943
  1.3458
  1.3165
  2.4103
  1.0533
  1.7815
  1.4061
  2.1802
  0.9886
  1.1141
  1.2210
  1.3257
  1.8708
  1.6071
  1.4969
  1.2958
  1.1608
  0.9993
  0.6997
  2.5080
  1.0482
  1.4110
  1.8211
  2.3854
  2.4584
  2.0267
  1.9324
  1.6686
  2.3925
  1.3504
  1.9314
  2.4688
  2.2756
  1.3571
  1.4856
  2.4605
  2.7555
  2.8775
  0.8696
  0.6599
  1.0593
  1.0700
  0.9298
  1.9956
  2.2161
  2.2084
  1.6220
  1.1626
  1.5926
  0.7989
  1.0761
  1.2732
  2.0618
  1.4437
  1.5537
  1.8481
  2.0876
  0.9675
  0.4506
  1.4136
  0.8490
  1.2861
  1.2262
  3.4415
  1.4798
  0.5757
  0.8053
  0.8657
  1.2911
  2.3058
  1.4168
  0.9986
  1.1963
  1.5742
  2.0729
  0.9315
  1.1655
  1.1168
  1.1475
  1.6534
  1.7462
  0.9781
  1.7381
  1.0939
  1.1043
  1.3494
  0.7770
  0.5724
  1.8667
  1.0200
  1.1307
  0.8269
  0.9879
  1.1117
  1.4385
  2.3246
  2.5138
  0.9115
  1.0578
  0.7320
  1.6562
  1.4827
  0.5685
  3.4491
  1.9896
  2.0521
  0.9075
  1.2675
  1.0924
  2.6108
  1.0890
  0.6949
  2.2735
  0.7547
  1.6364
  1.0205
  0.7436
  1.3534
  1.5288
  2.5751
  0.7504
  0.9168
  2.3543
  0.7190
  0.8317
  1.2518
  1.4798
  1.1023
  1.5361
  0.4985
  0.6109
  0.9817
  1.3473
  1.6659
  2.8802
  0.3228
  1.5283
  1.3065
  1.9141
  1.0007
  2.0190
  1.4825
  1.1234
  0.6844
  1.4365
  0.9743
  2.1293
  1.5214
  1.3259
  0.6814
  1.2939
  0.6188
  0.6421
  0.7311
  2.2736
  0.8418
  1.9729
  1.0084
  1.9774
  2.2133
  0.7438
  1.1675
  2.6822
  0.6403
  0.8460
  1.2970
  1.1952
  0.9338
  1.1365
  1.6780
  0.8185
  1.0743
  1.6519
  2.0700
  0.9490
  1.9632
  1.3310
  1.1290
  0.5067
  1.5383
  1.1103
  2.8381
  1.1821
  1.1883
  1.5355
  2.1017
  1.1177
  1.0712
  0.7522
  1.4946
  1.2895
  0.5904
  0.4068
  2.0167
  1.5424
  1.0638
  0.3425
  1.1384
  3.0723
  0.7040
  3.0110
  1.8263
  0.6956
  0.5911
  0.8097
  1.8654
  0.6678
  1.8846
  1.3750
  0.6798
  0.8424
  1.5255
  1.4950
  1.3587
  2.0014
  1.5513
  0.9465
  0.5946
  2.3052
  1.8731
  0.9167
  0.9334
  1.4370
  1.1357
  1.1465
  1.0277
  1.0530
  1.7208
[torch.FloatTensor of size 256]
), ('layer3.1.conv1.weight', 
( 0 , 0 ,.,.) = 
  4.8367e-02  4.8045e-02  3.8471e-02
  4.9888e-02  5.5208e-02  5.6701e-02
  2.4192e-02  1.3436e-02  2.4655e-02

( 0 , 1 ,.,.) = 
 -3.6542e-03 -3.1100e-03  4.9227e-03
 -1.2114e-03  3.4020e-03  1.9846e-02
 -2.1704e-02 -2.1158e-02 -2.8686e-03

( 0 , 2 ,.,.) = 
 -1.2536e-02 -2.0486e-02 -2.3154e-02
 -1.3515e-02 -2.3781e-02 -2.5515e-02
  1.0584e-02  7.2999e-03 -5.2329e-03
    ... 

( 0 ,253,.,.) = 
 -4.3596e-02 -1.8328e-02 -5.0577e-02
  1.6590e-02  5.0719e-02  2.1919e-02
 -1.9203e-02 -8.8315e-03 -2.0335e-02

( 0 ,254,.,.) = 
 -7.6949e-03 -1.5848e-02  1.5841e-03
 -6.2470e-03 -1.3135e-02  6.9092e-03
 -3.3791e-03  1.7889e-03  3.7373e-03

( 0 ,255,.,.) = 
 -6.6310e-03  5.8503e-03 -5.8571e-04
 -2.4600e-02 -8.9747e-03 -7.2466e-03
 -1.7566e-02 -8.5829e-03 -7.5220e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -2.3679e-02 -9.4399e-03 -1.1688e-02
 -2.4777e-02 -1.7326e-02 -3.1489e-02
 -3.3683e-03  9.7571e-03 -5.1527e-03

( 1 , 1 ,.,.) = 
 -3.0809e-02 -4.0685e-02 -2.2731e-02
 -5.1065e-03 -1.6457e-02 -1.8804e-02
  5.0382e-02  5.2054e-02  3.9185e-02

( 1 , 2 ,.,.) = 
 -3.7790e-02 -4.2234e-02 -2.9703e-02
 -6.4766e-03  2.6967e-03 -8.1736e-03
  3.7747e-02  5.5416e-02  2.5806e-02
    ... 

( 1 ,253,.,.) = 
 -2.7275e-02 -4.5364e-02 -3.9567e-02
  8.9827e-03  1.6150e-02  1.1675e-02
 -9.7209e-03 -3.6449e-02 -1.6842e-02

( 1 ,254,.,.) = 
  1.7824e-02  1.5013e-02  1.0225e-02
  5.4044e-03  1.1664e-02  6.4623e-03
  2.1803e-02  4.1795e-02  1.9234e-02

( 1 ,255,.,.) = 
 -2.6730e-04  1.5218e-03 -5.0352e-03
  2.5761e-02  2.7110e-02 -9.3395e-04
 -1.1949e-02 -7.5204e-03 -3.9370e-03
      ⋮  

( 2 , 0 ,.,.) = 
 -1.7447e-02 -1.8358e-02 -2.6020e-02
 -1.4074e-02 -1.1302e-02 -1.4814e-02
 -3.1460e-03 -1.8674e-02 -9.3350e-03

( 2 , 1 ,.,.) = 
 -5.1125e-03 -4.8036e-03  1.8139e-02
 -1.0524e-02 -1.5152e-02  2.3904e-03
  8.7093e-03  9.3810e-03  2.4203e-03

( 2 , 2 ,.,.) = 
 -7.6392e-03 -8.1496e-03 -1.5331e-02
 -8.0622e-03 -1.3383e-02 -1.3938e-02
 -1.6904e-02 -3.0059e-02 -1.8659e-02
    ... 

( 2 ,253,.,.) = 
  1.8390e-02 -2.6080e-03  9.3782e-03
 -6.4662e-04 -1.3146e-02  1.0045e-02
 -2.2293e-03 -1.4097e-02  1.7385e-02

( 2 ,254,.,.) = 
  3.0293e-04  2.9622e-03  1.0030e-02
 -5.7588e-03 -1.6943e-03  6.9988e-03
  9.8134e-03  1.4197e-02  5.9742e-03

( 2 ,255,.,.) = 
  2.8753e-03 -1.7814e-03  1.0873e-02
  1.5230e-02  4.5867e-03  1.6860e-02
  1.9536e-03  1.9503e-02  1.2168e-02
...     
      ⋮  

(253, 0 ,.,.) = 
  1.3983e-02  2.4598e-03 -7.4604e-03
 -2.2250e-02 -1.2757e-02 -2.8846e-03
 -1.0911e-02  7.5499e-03  8.6910e-03

(253, 1 ,.,.) = 
 -4.8463e-03 -8.3250e-03  1.3420e-02
 -6.2502e-03 -7.3982e-03  1.1153e-02
  4.0391e-03 -9.0354e-03 -7.5441e-03

(253, 2 ,.,.) = 
 -5.1627e-03 -8.9529e-03 -1.2414e-02
 -4.9261e-03 -3.5488e-03  2.1501e-03
 -1.1709e-02 -1.4984e-02 -1.9216e-03
    ... 

(253,253,.,.) = 
  1.5428e-02 -7.6036e-04 -1.3522e-03
 -3.4856e-02 -7.4478e-04 -6.5064e-03
 -9.1655e-03 -2.8467e-02 -4.8924e-02

(253,254,.,.) = 
  1.2207e-02  1.0519e-02 -8.4421e-03
 -2.5495e-02  2.8140e-03  1.6165e-03
 -1.8831e-02  1.2268e-02  1.5439e-02

(253,255,.,.) = 
 -1.3684e-02 -4.1732e-03  1.2609e-02
 -6.8834e-04  5.9757e-03 -1.0183e-02
  2.1559e-04 -1.3462e-02 -3.0114e-02
      ⋮  

(254, 0 ,.,.) = 
 -1.6186e-02 -6.4926e-02 -4.3146e-02
 -2.1790e-02 -4.9106e-02 -3.4568e-02
  4.0506e-02  4.2449e-02  6.1562e-02

(254, 1 ,.,.) = 
  3.5715e-03 -1.0916e-02 -2.2922e-02
 -2.4831e-03  6.4555e-03 -1.1316e-02
  1.6662e-03 -1.9145e-02 -2.3007e-02

(254, 2 ,.,.) = 
 -7.1243e-03 -4.2783e-05  4.9363e-03
 -1.5832e-02  4.0474e-03  4.5135e-04
 -4.7967e-03 -7.2164e-04 -1.7230e-02
    ... 

(254,253,.,.) = 
  1.1589e-02  7.7814e-04  6.3205e-03
  1.1360e-02 -6.2076e-03 -2.7689e-02
  2.6392e-02  2.3775e-03 -1.4937e-02

(254,254,.,.) = 
 -1.1237e-02 -2.6285e-03  9.1537e-03
 -8.2120e-03 -2.2236e-02  3.2917e-04
  5.5909e-03 -1.3858e-03  6.8947e-03

(254,255,.,.) = 
 -1.4783e-02 -1.0367e-02 -2.7472e-02
 -4.1090e-02 -3.8532e-02 -3.9202e-02
 -2.1614e-02 -3.4340e-02 -1.8542e-02
      ⋮  

(255, 0 ,.,.) = 
 -1.9492e-02 -1.6098e-02 -3.1792e-02
  2.5374e-02  4.6815e-02  2.7513e-02
  3.5903e-02  3.1892e-02  2.6156e-02

(255, 1 ,.,.) = 
  1.6856e-02  1.5645e-02  1.4189e-02
  2.2550e-02  3.0456e-02  1.6739e-02
 -2.3615e-04 -7.9501e-03 -1.9666e-03

(255, 2 ,.,.) = 
 -7.9060e-03 -4.7390e-03  1.6030e-03
  1.3802e-03 -8.5837e-03  6.9451e-03
  1.1407e-02 -5.9877e-03  1.3759e-02
    ... 

(255,253,.,.) = 
  4.0124e-03  2.9951e-02  1.1915e-02
 -4.3412e-02 -3.1776e-03 -2.7705e-02
 -1.6183e-02 -1.1247e-02 -3.5084e-02

(255,254,.,.) = 
  2.9837e-02  5.9935e-02  2.4631e-02
 -1.9571e-03  2.2415e-02 -1.5499e-02
  1.6075e-02  1.7850e-02 -1.8412e-02

(255,255,.,.) = 
 -4.3712e-03 -4.9032e-02 -2.1335e-02
 -5.2598e-03 -2.8579e-02 -2.2090e-02
  8.5126e-03  2.0862e-03  2.3301e-02
[torch.FloatTensor of size 256x256x3x3]
), ('layer3.1.bn1.weight', 
 0.2480
 0.1972
 0.2279
 0.2709
 0.3296
 0.2640
 0.2710
 0.3475
 0.2388
 0.2904
 0.2769
 0.3045
 0.2268
 0.2634
 0.2999
 0.2397
 0.2724
 0.2723
 0.2133
 0.3806
 0.2767
 0.2403
 0.2406
 0.2917
 0.2675
 0.2305
 0.2394
 0.3123
 0.2984
 0.3353
 0.2234
 0.1919
 0.3168
 0.2626
 0.2901
 0.2918
 0.3455
 0.2561
 0.2434
 0.2298
 0.3318
 0.3481
 0.2032
 0.2478
 0.2478
 0.2483
 0.3252
 0.2567
 0.2685
 0.1977
 0.2541
 0.4079
 0.2480
 0.2076
 0.2276
 0.2683
 0.2098
 0.2056
 0.2010
 0.3560
 0.2384
 0.3284
 0.1952
 0.2445
 0.2848
 0.3742
 0.2746
 0.2117
 0.3859
 0.4785
 0.3005
 0.2848
 0.3762
 0.2903
 0.2126
 0.1776
 0.2778
 0.3878
 0.3123
 0.1974
 0.2679
 0.2300
 0.2474
 0.2320
 0.2635
 0.2819
 0.2296
 0.3194
 0.3814
 0.2503
 0.2269
 0.2676
 0.3431
 0.3799
 0.3787
 0.2968
 0.3021
 0.2575
 0.3007
 0.1939
 0.1950
 0.3217
 0.3623
 0.2171
 0.2486
 0.2266
 0.2133
 0.2851
 0.2715
 0.2720
 0.3107
 0.2174
 0.2675
 0.2387
 0.3434
 0.2761
 0.2084
 0.2975
 0.3178
 0.2818
 0.2858
 0.3498
 0.2675
 0.2638
 0.3159
 0.2879
 0.1873
 0.2986
 0.3584
 0.2570
 0.1815
 0.2758
 0.2640
 0.2486
 0.2567
 0.2252
 0.3420
 0.2910
 0.2898
 0.2902
 0.2404
 0.2381
 0.3633
 0.2690
 0.3810
 0.2947
 0.2743
 0.4644
 0.3133
 0.2444
 0.3477
 0.3001
 0.1977
 0.2301
 0.2513
 0.2660
 0.3271
 0.1622
 0.2274
 0.2225
 0.3596
 0.3215
 0.1997
 0.2215
 0.2706
 0.2831
 0.2621
 0.3710
 0.2730
 0.2903
 0.1893
 0.2140
 0.2460
 0.3141
 0.2424
 0.3699
 0.2364
 0.2420
 0.2948
 0.2497
 0.2760
 0.2686
 0.2895
 0.3857
 0.1398
 0.2832
 0.3362
 0.2522
 0.2823
 0.2381
 0.2311
 0.3274
 0.4078
 0.2648
 0.2525
 0.3388
 0.3251
 0.2420
 0.2856
 0.3605
 0.2603
 0.2294
 0.2483
 0.2171
 0.2353
 0.4117
 0.2588
 0.2888
 0.1972
 0.2408
 0.2755
 0.3031
 0.2457
 0.2744
 0.3564
 0.2546
 0.3673
 0.2883
 0.2590
 0.3021
 0.2890
 0.3505
 0.2092
 0.2953
 0.3222
 0.2925
 0.2574
 0.3012
 0.3893
 0.2211
 0.2226
 0.3258
 0.3205
 0.2975
 0.2323
 0.3323
 0.2812
 0.2702
 0.2300
 0.2846
 0.3318
 0.2292
 0.3498
 0.2622
 0.3581
 0.4003
 0.2924
 0.3049
 0.3478
 0.2845
 0.2742
 0.2019
 0.2466
 0.2988
 0.2044
 0.2691
[torch.FloatTensor of size 256]
), ('layer3.1.bn1.bias', 
-0.1332
-0.0644
-0.3239
-0.2390
-0.3262
-0.1796
-0.2087
-0.3208
-0.1874
-0.2988
-0.2099
-0.2283
-0.2141
-0.2460
-0.2768
-0.1351
-0.2498
-0.2393
-0.1223
-0.4590
-0.2172
-0.1220
-0.2101
-0.1779
-0.2426
-0.1546
-0.1549
-0.3716
-0.2817
-0.3886
-0.1545
-0.0687
-0.3412
-0.2261
-0.1961
-0.2242
-0.2984
-0.1381
-0.2251
-0.1658
-0.4534
-0.3226
-0.0977
-0.1349
-0.2619
-0.1428
-0.3960
-0.1633
-0.2101
-0.1161
-0.1448
-0.5502
-0.2179
-0.1246
 0.0502
-0.1902
-0.1047
-0.1000
-0.1411
-0.3124
-0.2190
-0.3062
-0.1247
-0.1557
-0.2973
-0.3825
-0.1951
-0.1381
-0.5761
-0.3879
-0.2808
-0.2542
-0.3470
-0.2460
-0.1091
-0.0562
-0.1833
-0.4956
-0.3059
-0.0988
-0.2255
-0.1958
-0.1320
-0.1738
-0.2287
-0.1926
-0.0924
-0.3427
-0.5489
-0.2431
-0.1935
-0.1641
-0.2503
-0.3274
-0.4008
-0.2824
-0.2694
-0.1939
-0.2413
-0.0309
-0.0880
-0.3421
-0.3104
-0.1102
-0.1539
-0.1233
-0.1780
-0.2715
-0.2005
-0.1846
-0.2843
-0.1117
-0.1816
-0.2119
-0.3304
-0.2267
-0.1413
-0.3376
-0.2674
-0.2524
-0.2554
-0.4735
-0.2342
-0.2130
-0.3282
-0.1966
-0.1063
-0.2615
-0.4234
-0.1374
-0.0811
-0.3069
-0.1538
-0.1453
-0.1612
-0.1631
-0.3759
-0.2608
-0.2382
-0.2499
-0.1485
-0.1487
-0.4328
-0.1377
-0.2781
-0.2259
-0.2072
-0.4165
-0.3582
-0.1382
-0.3598
-0.2672
-0.2090
-0.0177
-0.1279
-0.2812
-0.3621
 0.0476
-0.2232
-0.1272
-0.3237
-0.3008
-0.1119
-0.0839
-0.2426
-0.2000
-0.1873
-0.4685
-0.2000
-0.3462
-0.0706
-0.1973
-0.3548
-0.1975
-0.3537
-0.3546
-0.1433
-0.2052
-0.2722
-0.1528
-0.2798
-0.1945
-0.2474
-0.4910
 0.1322
-0.2378
-0.5166
-0.3959
-0.2354
-0.1266
-0.0810
-0.4132
-0.5576
-0.2238
-0.1563
-0.3950
-0.3283
-0.0846
-0.3103
-0.3130
-0.1498
-0.1396
-0.0972
-0.1620
-0.1631
-0.6364
-0.1350
-0.2345
-0.1049
-0.1625
-0.2878
-0.2450
-0.1468
-0.2035
-0.5358
-0.1683
-0.5524
-0.2511
-0.1230
-0.2305
-0.1925
-0.3759
-0.1014
-0.1697
-0.4002
-0.2980
-0.3035
-0.1563
-0.4660
-0.1155
-0.1665
-0.3382
-0.2935
-0.3122
-0.3015
-0.3261
-0.2542
-0.2037
-0.0955
-0.2070
-0.4370
-0.2051
-0.4205
-0.3125
-0.4845
-0.3528
-0.2624
-0.2894
-0.3976
-0.2107
-0.1791
-0.1075
-0.1213
-0.3022
 0.0516
-0.1928
[torch.FloatTensor of size 256]
), ('layer3.1.bn1.running_mean', 
-0.1025
-0.2592
-0.0965
-0.3407
-0.7097
-0.6031
-0.2141
-0.9031
-0.4035
-0.6407
-0.2497
-0.3583
-0.4565
-0.6490
-0.5170
-0.1349
-0.4850
-0.4739
-0.3153
-0.8209
-0.4225
-0.6206
-0.4559
-0.3368
-0.4792
-0.1458
-0.2748
-0.3980
-0.7130
-0.8394
-0.2738
-0.2684
-0.7559
-0.1212
-0.4390
-0.6971
-0.5034
-0.5667
-0.0881
-0.5308
-1.0779
-0.4657
-0.1016
-0.3251
 0.5384
-0.7573
-0.4718
-0.3475
-0.7198
 0.0478
-0.1387
-0.8780
-0.4057
-0.1151
 0.0992
-0.3888
-1.0015
-0.3866
-0.3267
-0.7324
 0.0908
-0.2760
-0.2759
-0.1892
-0.5036
-0.7406
-0.5314
-0.4804
-0.6063
-0.0027
-0.9185
-0.2444
-1.1849
-0.5390
 0.0826
-0.5177
-0.2814
-0.9467
-0.3946
-0.2202
-0.9325
-0.2205
-0.5632
-0.3165
-0.3471
-0.5694
-0.5109
-0.5890
-0.7838
-0.0023
-0.2396
-0.1672
-0.8411
-0.7307
-0.7261
-0.9349
-0.3716
-0.3562
-0.5137
 0.0200
-0.1683
-0.5633
-0.7860
 0.0991
-0.4193
-0.2072
 0.3579
-0.4102
-0.3668
-0.4049
-0.9005
-0.2777
-0.2725
 0.3941
-0.5075
-0.4530
-0.1478
-0.0221
-0.8574
-0.3104
-0.3454
-0.6428
-0.2709
-0.8565
-0.6260
 0.0389
-0.2254
-0.0605
-0.5984
-0.3643
-0.3485
 0.0256
-0.6499
-0.3053
-0.2398
-0.3982
-0.7215
-0.6537
 0.0768
-0.4554
-0.5362
-0.1021
-0.6464
-0.2658
-0.4985
-0.4319
-0.3855
-0.3943
-0.5918
-0.2335
-0.6772
-0.5162
 0.3806
-0.3896
-0.7292
-0.2207
-0.1687
-0.6623
 0.2850
 0.1726
-0.1974
-0.5586
-0.2524
 0.1773
-0.6096
-0.2281
-0.4691
-0.8133
 0.0092
-0.4920
-0.1768
 0.1288
-0.0693
-0.8397
 0.2613
-0.2188
-0.3190
-0.4868
-0.6609
-0.7675
-0.7933
-0.9342
-0.0691
-0.6616
-0.3705
-0.4538
-0.9279
 0.3324
-0.4950
 0.2669
-0.8139
-0.7909
-0.7892
-0.4672
-0.5917
-0.5463
-0.2896
-0.0226
-0.2722
-0.3747
 0.1202
-0.0338
 0.1891
-0.2435
-0.0226
-0.7646
-0.4016
-0.3116
 1.5396
-0.1373
-0.7532
-0.6100
-0.2439
-0.5319
-0.6603
-0.3199
-0.8471
-0.0484
 0.0830
-0.4584
-0.3889
-0.8163
-0.3322
-0.6670
-0.7744
-0.7010
 0.2128
-0.5624
-1.0360
-0.3098
 0.7000
-0.3580
-0.3484
-0.5161
-0.2167
-0.8903
-0.3402
-0.4037
-0.5501
-0.4197
-0.5290
-0.4974
 0.0083
-0.0166
-0.8607
-0.5581
-0.5161
-0.3668
-0.7363
-0.3654
-0.2788
-0.3890
-0.1521
-0.3327
-0.7903
-0.2531
[torch.FloatTensor of size 256]
), ('layer3.1.bn1.running_var', 
 0.2021
 0.2649
 0.0816
 0.1141
 0.1276
 0.1230
 0.1780
 0.1393
 0.1235
 0.1178
 0.1281
 0.1505
 0.1060
 0.0954
 0.1147
 0.1260
 0.0831
 0.2214
 0.1452
 0.1260
 0.1203
 0.1507
 0.1066
 0.3038
 0.1444
 0.1266
 0.1966
 0.1145
 0.1376
 0.0991
 0.1222
 0.1343
 0.1066
 0.1148
 0.1946
 0.1589
 0.1715
 0.1588
 0.1577
 0.0995
 0.1036
 0.1305
 0.1547
 0.1623
 0.1437
 0.1624
 0.0856
 0.2183
 0.1339
 0.0807
 0.1528
 0.1277
 0.1413
 0.1200
 0.2567
 0.1202
 0.1523
 0.1513
 0.1002
 0.1453
 0.1620
 0.1270
 0.1179
 0.1004
 0.2034
 0.1578
 0.1785
 0.1181
 0.0674
 0.2460
 0.1251
 0.1144
 0.1670
 0.1460
 0.1625
 0.1203
 0.1697
 0.1065
 0.1415
 0.1694
 0.0909
 0.1133
 0.1569
 0.0880
 0.1333
 0.1711
 0.2421
 0.1188
 0.0882
 0.1084
 0.1373
 0.2886
 0.1736
 0.1740
 0.1512
 0.1086
 0.1211
 0.1523
 0.1453
 0.1735
 0.1515
 0.1348
 0.2445
 0.1433
 0.1422
 0.1520
 0.0985
 0.1292
 0.1372
 0.2228
 0.1265
 0.1538
 0.1600
 0.1121
 0.1922
 0.1195
 0.1100
 0.1151
 0.1431
 0.1258
 0.1416
 0.1049
 0.1840
 0.1158
 0.1111
 0.2187
 0.1193
 0.1541
 0.1074
 0.1350
 0.1385
 0.0990
 0.1418
 0.1837
 0.1667
 0.1712
 0.1567
 0.1542
 0.1501
 0.1585
 0.1422
 0.1527
 0.1179
 0.1882
 0.1856
 0.1549
 0.1798
 0.2879
 0.1156
 0.1749
 0.1297
 0.1522
 0.1308
 0.2123
 0.1579
 0.0937
 0.1310
 0.2052
 0.1510
 0.1542
 0.1416
 0.1203
 0.1372
 0.1980
 0.1352
 0.2065
 0.1385
 0.1358
 0.1696
 0.2816
 0.1058
 0.0886
 0.1123
 0.2269
 0.1117
 0.1080
 0.2029
 0.1026
 0.1150
 0.1452
 0.1180
 0.1690
 0.2079
 0.1133
 0.1933
 0.1454
 0.0872
 0.1002
 0.1101
 0.1757
 0.1967
 0.0907
 0.1175
 0.1508
 0.1348
 0.1203
 0.1413
 0.2189
 0.1030
 0.1387
 0.1669
 0.1090
 0.1632
 0.0875
 0.1349
 0.1074
 0.2839
 0.1628
 0.1872
 0.1538
 0.0973
 0.1831
 0.2120
 0.1716
 0.0890
 0.1869
 0.0877
 0.1300
 0.2792
 0.1565
 0.1605
 0.1427
 0.1366
 0.1441
 0.1080
 0.1166
 0.1286
 0.2491
 0.1250
 0.1469
 0.1387
 0.1164
 0.1255
 0.0991
 0.0942
 0.1549
 0.2844
 0.1235
 0.1733
 0.1828
 0.0891
 0.1104
 0.1286
 0.1495
 0.1249
 0.4629
 0.1380
 0.1015
 0.1064
 0.1612
 0.2148
 0.1442
 0.1714
 0.1601
 0.2572
 0.1879
[torch.FloatTensor of size 256]
), ('layer3.1.conv2.weight', 
( 0 , 0 ,.,.) = 
 -4.2568e-02 -2.6148e-02 -2.2019e-02
 -1.7334e-02 -7.5950e-03 -7.2384e-03
 -1.7876e-03  2.3800e-02  1.4873e-02

( 0 , 1 ,.,.) = 
 -2.8277e-03 -5.0644e-03 -4.9442e-03
  1.2117e-03  1.4908e-02  1.6013e-02
  1.4391e-02  3.3109e-02  5.0061e-02

( 0 , 2 ,.,.) = 
 -3.4891e-03 -4.4437e-03  2.6589e-03
  1.5105e-02  2.6303e-02  2.6802e-02
  3.9232e-02  5.0057e-02  4.6637e-02
    ... 

( 0 ,253,.,.) = 
  2.2877e-02  1.5454e-02 -2.4483e-02
  3.1145e-02  3.4944e-02  1.3296e-02
 -1.7674e-04  7.3297e-03 -5.7174e-03

( 0 ,254,.,.) = 
 -2.1781e-02 -3.7379e-02 -1.3382e-02
  1.8976e-02  1.4155e-02 -6.5395e-03
  2.6831e-02  3.6354e-02  1.1450e-02

( 0 ,255,.,.) = 
  3.1603e-02  3.3933e-02  3.1575e-02
 -1.0098e-02 -1.2657e-02  1.1674e-02
  1.0325e-02  7.9424e-05  1.5911e-02
      ⋮  

( 1 , 0 ,.,.) = 
  2.5937e-02  6.2590e-03  6.0798e-03
 -4.5745e-03 -3.5188e-02 -2.9249e-02
  2.1366e-02  2.0480e-03  6.2699e-03

( 1 , 1 ,.,.) = 
 -2.9549e-03 -1.3679e-03 -8.6876e-03
  7.9988e-03  1.2888e-03 -5.9629e-03
 -9.1481e-03 -2.1914e-02 -4.1572e-02

( 1 , 2 ,.,.) = 
  7.6390e-03  3.0253e-03  2.7817e-04
  7.0329e-03  1.1914e-02 -2.4419e-03
 -8.2131e-03 -9.7848e-05 -1.9223e-02
    ... 

( 1 ,253,.,.) = 
 -4.4498e-03  5.1611e-03  3.7416e-03
  3.2110e-04  8.3762e-03  3.6612e-03
  9.3343e-03  8.1829e-03  1.1234e-03

( 1 ,254,.,.) = 
 -6.6849e-02 -5.9871e-02 -3.3931e-02
  2.2337e-02  3.1932e-02  3.7244e-02
  9.3296e-03  3.7222e-02  1.4052e-02

( 1 ,255,.,.) = 
 -2.0643e-03  1.2408e-02 -3.1072e-03
 -8.2882e-03  1.3917e-02 -2.0680e-02
 -1.9329e-02  1.1953e-02 -2.3436e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -1.7788e-03 -3.5982e-03 -1.2592e-03
 -1.5320e-02 -1.0690e-02 -2.0311e-02
 -3.4649e-04 -2.2188e-03 -1.5021e-02

( 2 , 1 ,.,.) = 
 -2.8952e-02 -3.3958e-02 -2.5437e-02
 -1.5919e-04  1.5204e-02  3.4554e-02
  3.6892e-02  7.0144e-02  7.3610e-02

( 2 , 2 ,.,.) = 
  1.0721e-02  2.1531e-03 -5.6155e-03
  1.1754e-02 -4.8546e-03 -5.5013e-03
 -3.7388e-04 -9.7639e-03 -1.5029e-02
    ... 

( 2 ,253,.,.) = 
  1.5622e-02  9.8976e-03  3.4725e-03
  1.4711e-02  7.0707e-03 -9.1826e-03
  7.0986e-03  6.3087e-03 -3.5893e-03

( 2 ,254,.,.) = 
 -6.4518e-03 -6.7673e-03  1.1635e-02
  1.4707e-02  2.3831e-02  4.9396e-02
  1.8897e-02  3.4981e-02  4.5488e-02

( 2 ,255,.,.) = 
  1.5900e-02  3.3369e-02  2.6194e-02
  1.0616e-02  1.8515e-02  3.0190e-03
  1.1004e-02  2.5503e-02  1.3654e-02
...     
      ⋮  

(253, 0 ,.,.) = 
 -2.1231e-02 -1.2804e-02 -1.5498e-02
  7.6750e-03  1.2120e-02  1.5099e-02
  1.8536e-02  2.5110e-02  2.5283e-02

(253, 1 ,.,.) = 
  7.4059e-03 -3.0540e-03 -1.5475e-03
 -8.4415e-03 -2.2002e-02 -3.4099e-03
  9.1918e-03  2.2617e-03 -1.4260e-02

(253, 2 ,.,.) = 
 -5.2568e-03 -5.3507e-03 -3.2230e-03
 -1.5805e-02  6.0508e-03 -1.5917e-03
 -8.9323e-03  2.6483e-03  5.0508e-03
    ... 

(253,253,.,.) = 
  1.9826e-02 -2.1209e-03  1.4889e-02
  5.7275e-02  3.5549e-02  6.0175e-03
  2.3347e-02 -2.2153e-02 -2.5497e-02

(253,254,.,.) = 
 -1.3985e-02 -6.4766e-02 -1.7286e-02
  1.1704e-02  1.0714e-02  4.6278e-02
 -1.0038e-02 -3.5707e-03  2.2691e-02

(253,255,.,.) = 
 -8.3342e-03 -1.3070e-03 -1.0049e-02
  3.2605e-02  5.3259e-02  2.2172e-02
  3.7339e-02  6.1155e-02  4.4555e-02
      ⋮  

(254, 0 ,.,.) = 
 -1.6584e-02 -1.3850e-02 -1.4604e-02
 -1.7604e-02 -2.1268e-02 -1.6734e-02
 -6.0039e-04  3.8569e-03  1.2837e-02

(254, 1 ,.,.) = 
  1.7623e-02  2.3706e-02  2.7633e-02
 -2.2841e-02 -1.9576e-02 -1.6551e-02
 -8.0822e-03  4.3779e-03 -5.3622e-03

(254, 2 ,.,.) = 
  1.5582e-02  3.7879e-02  2.3555e-02
 -6.4632e-03  9.8620e-03  1.2121e-02
 -1.3743e-02 -6.1246e-03 -2.7332e-03
    ... 

(254,253,.,.) = 
 -2.5037e-03 -1.2064e-02 -9.0989e-03
 -4.7911e-04 -2.8339e-03  2.1365e-03
 -6.2077e-03 -2.6615e-03  1.1215e-02

(254,254,.,.) = 
 -8.1794e-03 -2.2417e-02 -3.4012e-02
 -2.8553e-02 -2.9546e-02 -4.4372e-02
 -5.0348e-02 -3.4973e-02 -5.2028e-02

(254,255,.,.) = 
  1.4728e-02  3.2834e-02  2.6312e-02
  1.3449e-02  2.6407e-02  2.6924e-02
  2.5572e-02  3.4316e-02  2.6184e-02
      ⋮  

(255, 0 ,.,.) = 
  7.2026e-03 -2.3931e-03  2.2182e-03
  4.2555e-03 -6.4084e-03  7.8548e-03
  2.0510e-02  1.8644e-02  2.3280e-02

(255, 1 ,.,.) = 
 -1.2471e-02  1.3008e-02  1.0010e-02
 -1.7496e-03  6.1331e-03  4.3366e-03
  5.2269e-03  1.5111e-02 -8.1881e-03

(255, 2 ,.,.) = 
 -3.7337e-02  1.9923e-02 -2.4149e-02
 -4.9487e-02 -1.0510e-02 -4.2107e-02
 -5.7684e-03 -4.8632e-03 -1.8332e-02
    ... 

(255,253,.,.) = 
  7.2013e-03 -1.5208e-02 -1.6507e-02
 -8.8276e-03 -1.8698e-02 -1.6637e-03
 -1.2015e-02  2.9667e-03  6.2300e-03

(255,254,.,.) = 
 -1.8341e-02 -9.0521e-03  2.6030e-02
  3.5930e-02  5.3049e-02  5.8487e-02
 -1.3661e-02 -3.6888e-03 -7.1606e-03

(255,255,.,.) = 
 -1.2594e-02 -4.0898e-02  1.7162e-03
 -1.7420e-02 -4.3435e-02 -1.3183e-02
 -3.7506e-02 -5.5707e-02 -3.0051e-02
[torch.FloatTensor of size 256x256x3x3]
), ('layer3.1.bn2.weight', 
 0.1971
 0.1771
 0.1303
 0.1995
 0.1839
 0.0934
 0.2333
 0.2236
 0.1654
 0.1280
 0.0842
 0.1085
 0.3168
 0.2032
 0.3246
 0.2184
 0.3208
 0.2824
 0.3408
 0.3339
 0.3307
 0.5571
 0.2821
 0.3081
 0.2114
 0.2971
 0.2361
 0.5500
 0.1221
 0.3381
 0.1528
 0.1544
 0.1982
 0.0582
 0.1812
 0.2489
 0.1954
 0.0705
 0.0918
 0.1328
 0.2616
 0.2013
 0.0720
 0.1573
 0.1919
 0.0813
 0.1170
 0.2504
 0.2863
 0.3032
 0.1476
 0.3696
 0.1870
 0.2097
 0.1907
 0.2364
 0.1642
 0.1079
 0.2531
 0.1703
 0.1266
 0.0814
 0.2407
 0.2609
 0.2705
 0.2128
 0.5007
 0.2375
 0.0802
 0.2896
 0.1776
 0.0887
 0.1094
 0.1834
 0.2812
 0.1971
 0.2021
 0.3443
 0.1411
 0.1362
 0.2676
 0.1618
 0.2723
 0.2727
 0.2528
 0.0982
 0.4707
 0.2239
 0.3649
 0.1987
 0.0815
 0.2543
 0.3322
 0.1561
 0.2336
 0.1294
 0.2570
 0.1700
 0.1374
 0.2215
 0.5015
 0.3132
 0.1487
 0.1174
 0.0916
 0.2130
 0.1393
 0.3057
 0.5634
 0.1018
 0.0994
 0.0492
 0.4427
 0.3142
 0.4002
 0.1334
 0.2174
 0.5522
 0.2806
 0.2784
 0.4333
 0.2602
 0.3788
 0.1827
 0.2664
 0.1077
 0.3001
 0.2428
 0.5130
 0.0829
 0.1254
 0.1996
 0.1451
 0.2253
 0.1467
 0.3712
 0.0794
 0.5425
 0.2058
 0.2103
 0.1288
 0.4993
 0.1815
 0.1845
 0.4154
 0.3817
 0.2054
 0.2205
 0.1471
 0.4964
 0.4202
 0.0801
 0.0623
 0.3536
 0.2760
 0.3840
 0.1632
 0.1402
 0.2674
 0.0844
 0.2305
 0.2259
 0.2146
 0.4181
 0.2821
 0.2926
 0.3416
 0.4640
 0.3025
 0.3732
 0.5871
 0.0616
 0.2797
 0.3042
 0.2173
 0.3550
 0.2096
 0.2449
 0.3428
 0.2868
 0.3543
 0.4667
 0.3220
 0.3805
 0.2632
 0.2160
 0.1924
 0.4074
 0.4966
 0.3623
 0.1670
 0.1321
 0.2374
 0.2118
 0.1522
 0.1668
 0.3836
 0.0983
 0.3729
 0.3943
 0.4353
 0.2270
 0.1508
 0.3133
 0.3850
 0.5774
 0.1892
 0.2822
 0.0907
 0.2364
 0.0964
 0.2360
 0.0699
 0.2938
 0.5100
 0.3348
 0.2339
 0.1145
 0.2155
 0.2266
 0.2829
 0.2341
 0.1891
 0.2906
 0.2681
 0.3876
 0.3915
 0.1844
 0.1889
 0.4405
 0.1405
 0.3460
 0.2724
 0.2567
 0.2785
 0.1148
 0.1607
 0.1754
 0.0883
 0.1649
 0.1268
 0.2356
 0.2811
 0.0766
 0.1424
 0.1683
 0.3979
 0.2685
 0.6383
 0.1087
 0.3180
 0.1760
 0.3634
 0.2615
 0.1999
 0.2541
[torch.FloatTensor of size 256]
), ('layer3.1.bn2.bias', 
-0.0162
-0.2033
 0.0294
-0.1697
-0.1840
-0.0309
-0.2039
-0.1426
-0.0443
-0.0886
-0.0647
-0.0968
-0.0380
-0.2073
-0.3061
 0.1443
-0.3079
-0.1232
-0.1627
-0.0980
-0.2471
-0.2837
-0.1201
-0.2893
-0.2303
-0.3562
-0.0825
-0.3483
 0.0707
-0.1321
-0.1074
-0.1451
 0.0235
 0.0225
-0.1885
-0.2507
-0.2461
 0.0631
-0.0023
-0.1209
-0.2581
-0.1640
-0.0172
-0.1143
-0.2096
-0.0158
 0.0128
-0.1332
-0.3139
-0.2294
-0.1527
-0.3503
 0.2086
 0.0785
-0.1597
-0.1990
 0.0346
 0.0388
-0.1269
 0.1019
 0.0981
-0.0390
-0.2537
-0.1356
-0.1796
-0.2422
-0.4517
-0.3124
-0.0177
-0.2615
-0.1567
 0.0212
-0.0753
-0.1426
-0.2788
 0.0062
-0.1895
-0.2327
-0.1298
-0.1200
-0.1917
-0.0987
-0.1916
-0.1666
-0.2729
 0.1287
-0.4620
-0.2259
-0.2270
 0.1939
 0.0230
-0.3303
-0.3202
-0.1292
-0.0716
 0.0048
-0.2579
-0.0116
-0.0557
-0.1229
-0.4804
-0.2351
-0.1367
-0.0578
-0.0537
-0.2743
-0.0827
-0.1922
-0.3481
-0.0358
-0.1094
 0.0138
-0.1888
-0.2592
-0.3293
-0.0820
-0.1839
-0.1636
-0.3163
-0.0246
-0.1667
-0.1653
-0.3076
-0.2229
-0.1834
-0.0536
-0.0621
-0.1752
-0.5243
-0.1933
-0.1119
-0.2283
-0.0437
-0.1777
-0.1300
-0.2519
-0.0456
-0.6305
-0.1364
-0.2138
 0.0406
-0.5287
-0.2014
-0.1442
-0.1930
-0.3033
 0.1030
-0.1499
-0.2297
-0.5301
-0.2543
-0.0417
 0.0429
-0.3218
-0.1611
-0.2562
-0.1187
-0.1001
 0.0225
 0.0996
-0.2138
-0.2019
 0.0808
-0.0121
-0.2364
-0.3247
-0.1482
-0.4846
-0.3449
-0.1365
-0.6664
 0.0418
-0.2807
-0.0961
-0.2378
-0.1834
-0.1890
-0.0377
-0.3056
-0.1843
-0.1357
-0.3038
-0.2680
-0.4143
-0.2633
-0.1750
-0.1856
-0.2405
-0.1082
-0.2250
-0.1268
-0.1094
 0.0594
-0.1419
-0.1178
-0.1602
-0.0328
-0.0194
-0.1985
 0.0470
-0.1887
-0.2776
-0.0930
-0.4092
-0.3378
-0.7252
 0.0260
-0.1829
 0.0561
-0.2227
-0.0026
-0.3218
-0.0093
-0.2843
-0.5121
-0.2337
-0.0836
-0.0818
-0.1296
-0.2090
 0.0169
-0.1899
-0.1892
-0.3075
-0.3108
-0.2986
-0.4712
-0.1823
-0.1893
-0.3131
-0.0876
-0.1166
-0.2995
-0.0831
-0.3427
-0.0772
-0.1460
-0.1611
 0.0203
-0.0627
-0.0610
-0.2574
-0.1383
 0.0470
-0.0302
-0.1638
-0.3323
-0.1741
-0.6307
-0.0772
-0.2123
-0.1559
-0.0459
-0.2416
-0.0143
-0.2079
[torch.FloatTensor of size 256]
), ('layer3.1.bn2.running_mean', 
-0.0823
-0.0332
-0.0266
-0.0132
-0.0638
-0.1047
-0.0671
-0.0530
 0.0623
-0.0001
-0.0130
 0.0178
-0.0493
-0.0653
-0.0985
 0.2112
-0.0922
-0.1139
-0.1879
-0.0822
-0.0585
-0.5599
-0.0512
-0.1987
-0.0715
-0.0665
-0.1684
-0.1031
 0.1054
-0.2306
-0.0339
-0.0807
-0.0035
 0.0472
-0.0788
-0.1265
-0.0615
 0.0643
 0.0278
 0.0031
-0.0767
-0.0951
 0.0001
-0.0472
-0.0309
-0.0464
-0.0633
-0.0814
-0.0705
-0.0671
-0.0792
-0.1778
 0.0551
 0.4111
 0.0016
-0.0799
-0.0692
-0.0498
 0.0038
 0.0025
 0.0356
-0.0258
-0.1225
-0.0464
-0.1216
-0.0643
-0.1383
-0.0232
-0.0181
-0.1470
 0.0488
-0.0557
-0.0348
-0.0566
-0.0651
-0.1047
-0.0526
-0.1851
-0.1060
 0.0265
 0.0717
-0.0200
-0.1123
-0.2006
-0.1032
 0.0041
-0.2242
-0.1273
-0.0887
 0.1082
-0.0589
-0.0834
-0.1046
 0.0230
-0.0885
 0.0335
-0.1107
-0.0092
-0.0460
-0.1370
-0.2022
 0.0463
-0.0197
-0.0119
-0.0600
-0.0751
-0.0727
-0.0911
-0.0921
-0.0580
-0.0364
-0.0447
-0.1709
-0.1368
-0.1476
-0.1476
-0.1123
-0.2308
-0.0906
-0.2593
-0.2083
-0.0634
-0.2680
-0.1612
-0.1003
-0.1318
-0.0904
-0.0967
-0.1973
 0.0535
-0.0278
-0.0744
-0.0563
-0.0591
-0.0241
-0.1510
 0.0022
-0.1889
-0.1289
-0.0196
-0.0728
-0.1840
-0.0609
-0.0200
-0.4031
-0.0734
-0.0960
-0.0865
-0.0683
-0.1690
-0.0987
 0.0124
-0.0443
-0.1937
-0.1329
-0.1207
-0.1423
 0.1048
-0.0854
 0.0638
-0.0578
-0.0865
 0.0336
-0.3877
-0.0574
-0.0753
-0.2072
-0.1827
-0.1238
-0.2206
-0.1645
-0.0293
-0.1309
-0.1585
-0.0439
-0.1387
-0.0617
-0.0198
-0.1220
-0.0763
-0.3562
 0.3413
-0.0658
-0.1264
-0.1754
 0.0417
-0.0362
-0.1289
-0.2704
-0.2141
 0.0194
 0.0131
-0.0095
-0.0603
-0.0342
-0.0799
-0.3172
-0.0341
-0.1697
-0.1221
-0.3093
-0.1225
-0.0283
-0.1518
-0.0933
-0.2834
-0.0030
-0.0359
 0.0030
-0.0460
-0.0855
-0.0382
-0.0174
-0.0826
-0.1509
-0.1769
-0.1501
 0.0015
-0.0877
-0.0333
-0.2545
-0.0130
-0.0469
-0.0884
-0.0899
-0.1911
-0.1313
-0.0350
-0.1149
-0.1889
-0.0409
-0.3819
-0.0897
-0.1702
-0.1546
 0.0307
-0.0409
-0.0370
-0.0691
-0.0420
 0.0535
-0.1312
-0.1199
-0.0578
-0.0546
-0.1234
-0.1162
-0.1232
-0.2521
-0.0410
-0.1056
-0.0522
-0.2415
-0.0947
-0.1564
-0.1230
[torch.FloatTensor of size 256]
), ('layer3.1.bn2.running_var', 
1.00000e-02 *
  1.8530
  2.6394
  1.2856
  1.2689
  1.4751
  1.5978
  1.2460
  1.8145
  1.9383
  1.1628
  0.7526
  1.1219
  3.4934
  1.7682
  2.0756
  2.5356
  2.3623
  1.9827
  2.2904
  3.4381
  1.9890
  5.3809
  3.1563
  1.9644
  1.2794
  1.9174
  1.9996
  2.8697
  1.8158
  2.7271
  1.1315
  1.1837
  2.1068
  0.8485
  1.6900
  1.5894
  1.2585
  1.5643
  0.9987
  0.8934
  1.8547
  1.5648
  0.8220
  1.3122
  1.1694
  1.0160
  1.0536
  2.4400
  1.3983
  1.6112
  1.1215
  1.6260
  2.9490
  3.5517
  1.4957
  2.0074
  1.7436
  1.1895
  2.0108
  3.5077
  1.8778
  1.2123
  1.3372
  2.3718
  2.4176
  1.7590
  2.8278
  1.4679
  1.0504
  1.6922
  2.4693
  1.8485
  1.0362
  1.6711
  1.3731
  2.2465
  1.1501
  2.4804
  1.2025
  1.2570
  2.1939
  1.6975
  1.7424
  2.1701
  1.7643
  1.9817
  2.3719
  1.2252
  2.7208
  6.0497
  1.1410
  1.2758
  1.9986
  1.9867
  2.2465
  1.9493
  1.6528
  2.3030
  1.8762
  2.0904
  2.1493
  2.4125
  1.2632
  1.4381
  1.2692
  0.9812
  1.6465
  1.6313
  4.0332
  1.5335
  1.4138
  0.5016
  3.3883
  1.5893
  2.2616
  1.2452
  1.7113
  4.5386
  1.6545
  3.1452
  4.1772
  2.2630
  2.4911
  1.6146
  1.9939
  1.0476
  2.7228
  1.4376
  2.7456
  1.1228
  0.9946
  0.9961
  2.0141
  1.8478
  0.9278
  2.0743
  0.8191
  2.8920
  1.5118
  1.3835
  1.6313
  2.1079
  1.2747
  1.3377
  4.0637
  2.5386
  2.1835
  1.5742
  0.8617
  1.8719
  3.4042
  0.9114
  0.6896
  2.1932
  2.0435
  3.3022
  2.0678
  1.2721
  4.0421
  1.4042
  1.4963
  1.6277
  4.7124
  5.3335
  1.4413
  1.6945
  2.4771
  2.2726
  1.6246
  3.9784
  2.5942
  0.6863
  1.6802
  2.0793
  1.8885
  2.3745
  1.5412
  2.2586
  1.8481
  2.0519
  2.9992
  5.0411
  1.8868
  1.7426
  1.4016
  1.8388
  2.3564
  4.0373
  6.9144
  2.7295
  2.0721
  1.6795
  2.3665
  1.8622
  1.4306
  1.1317
  4.2427
  1.4678
  2.1902
  4.3384
  4.4179
  1.1020
  1.7952
  1.4674
  1.5806
  2.5305
  2.3667
  2.1030
  1.1405
  1.9686
  1.1575
  1.3539
  0.9093
  2.0994
  2.3689
  2.5597
  3.3564
  1.6578
  1.5100
  1.3169
  2.9548
  2.6140
  1.6542
  1.3860
  1.1822
  2.0687
  1.8049
  0.9810
  1.6161
  3.9758
  1.1737
  3.2446
  1.3650
  2.2535
  1.7262
  1.2099
  0.9317
  1.1607
  1.1387
  1.9526
  1.4283
  1.0255
  2.0608
  1.1115
  1.6965
  1.3392
  2.2404
  2.1118
  3.9554
  0.7481
  2.4169
  1.2689
  3.6180
  1.6522
  1.8249
  1.6171
[torch.FloatTensor of size 256]
), ('layer4.0.conv1.weight', 
( 0 , 0 ,.,.) = 
 -1.1645e-02 -1.9010e-02 -2.1876e-02
  2.0482e-02  2.3962e-02  2.9161e-02
  4.3672e-02  3.3278e-02  4.9908e-02

( 0 , 1 ,.,.) = 
 -7.4040e-03  2.8083e-03 -4.7339e-03
  6.9030e-03  1.4271e-02 -3.6954e-03
 -3.1341e-03  1.3736e-02  1.6127e-03

( 0 , 2 ,.,.) = 
  1.8676e-02 -1.0553e-02 -1.4233e-02
  8.9944e-03 -2.5068e-03 -1.2145e-02
 -4.9455e-03 -2.9206e-02 -9.6385e-03
    ... 

( 0 ,253,.,.) = 
 -1.2655e-02  1.7691e-02  9.8264e-04
  7.4271e-03  7.6115e-03  1.1135e-02
  2.3242e-02  1.1058e-02  4.0498e-03

( 0 ,254,.,.) = 
  1.8557e-02  1.2472e-02  1.7220e-02
 -4.8544e-03  8.3627e-03  2.2811e-02
 -5.1675e-03  2.3264e-02  3.4068e-02

( 0 ,255,.,.) = 
  2.4934e-02  2.2373e-02  4.2614e-02
  1.3486e-02  1.6760e-03  1.3019e-02
 -6.2821e-03 -1.5112e-03 -8.9229e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -9.8089e-04 -6.3011e-03  5.9932e-03
  1.5936e-02  1.3394e-02  2.9934e-02
  2.3149e-02  2.0709e-02  2.5485e-02

( 1 , 1 ,.,.) = 
 -2.0015e-02 -3.3349e-02 -8.0396e-03
 -7.2800e-03 -1.2187e-02 -2.0389e-04
 -1.3138e-02 -2.0427e-02 -1.6286e-02

( 1 , 2 ,.,.) = 
 -6.7681e-03  5.0045e-03 -2.6683e-03
 -2.1073e-02  2.8275e-04 -1.8205e-02
 -1.7382e-02 -5.0244e-03 -3.0386e-03
    ... 

( 1 ,253,.,.) = 
 -1.1035e-02 -2.2964e-02 -1.1028e-02
 -6.3256e-03 -4.1667e-03 -1.7323e-02
 -1.3611e-02 -2.3468e-02 -1.6436e-02

( 1 ,254,.,.) = 
  7.3663e-03  6.6219e-03  5.2776e-03
 -3.5464e-03  3.2750e-03 -9.1126e-03
  3.5593e-04 -1.0151e-02 -1.9123e-02

( 1 ,255,.,.) = 
  1.8193e-03  8.8087e-03  5.1361e-03
  3.1915e-03  2.5287e-02  2.4939e-02
  1.3968e-02  1.9613e-02  2.2382e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -4.1548e-03  8.8964e-03  2.0143e-03
  1.1327e-02  1.3251e-02  1.4014e-02
  7.2196e-03  1.3045e-02  2.4827e-02

( 2 , 1 ,.,.) = 
 -1.5025e-02  5.0530e-03  7.4766e-03
 -2.4685e-02 -1.6732e-02 -1.0888e-02
 -2.8064e-02 -1.1875e-02 -3.4120e-03

( 2 , 2 ,.,.) = 
  2.8449e-02  1.4594e-02  6.9441e-03
  2.4799e-02  1.9453e-02  1.1294e-02
 -1.0787e-02 -2.1006e-02 -1.0372e-02
    ... 

( 2 ,253,.,.) = 
  1.4967e-02  8.2449e-03  2.0244e-03
  1.4287e-02 -6.3867e-03 -8.0757e-03
  2.7547e-02  1.0791e-02  1.6567e-02

( 2 ,254,.,.) = 
  3.6191e-02  3.8918e-02  3.9028e-02
 -8.3489e-04  1.3273e-02  2.0172e-02
 -2.0652e-02 -5.4010e-03  1.7147e-03

( 2 ,255,.,.) = 
  2.0373e-04  3.5919e-03  8.5592e-03
  6.2363e-03 -9.3086e-05  1.2940e-02
  1.3152e-02  1.0732e-02  1.9896e-02
...     
      ⋮  

(509, 0 ,.,.) = 
 -1.7400e-02 -6.7019e-03 -9.1787e-03
 -9.9672e-03  2.6298e-04  3.3439e-03
  1.5721e-02  1.4216e-02  2.0509e-02

(509, 1 ,.,.) = 
  2.1410e-02  3.6914e-02  2.8239e-02
  3.8158e-02  4.8944e-02  3.4652e-02
  3.1723e-02  4.4208e-02  4.0035e-02

(509, 2 ,.,.) = 
 -3.3437e-03 -1.0482e-02 -5.3990e-03
 -5.3186e-03  1.1394e-02  1.7593e-03
 -5.6652e-03 -6.6373e-03 -1.3492e-02
    ... 

(509,253,.,.) = 
 -1.7099e-02 -1.8145e-03 -1.3040e-02
 -2.2750e-02 -3.6062e-03 -8.0294e-03
 -1.6087e-02 -1.0175e-02 -1.3529e-02

(509,254,.,.) = 
  4.1701e-04 -5.1785e-03 -2.1884e-02
  2.6919e-03  8.9139e-03 -1.4217e-04
 -7.3746e-03 -6.6853e-03 -2.3725e-02

(509,255,.,.) = 
  1.9425e-02  1.3175e-02  1.7511e-02
  1.8235e-02  4.4286e-02  2.3767e-02
  2.6504e-02  3.3104e-02  1.9696e-02
      ⋮  

(510, 0 ,.,.) = 
 -1.0177e-02 -1.0701e-02 -2.0428e-02
 -1.7986e-02  5.9928e-03 -1.0584e-03
 -1.8794e-02 -1.8773e-03 -6.9449e-03

(510, 1 ,.,.) = 
 -2.8498e-03  1.6427e-03  1.4575e-04
 -5.4403e-03  8.3667e-03 -9.4164e-03
 -4.4999e-03  5.4902e-03  2.4863e-03

(510, 2 ,.,.) = 
 -1.3356e-02 -2.1525e-02  5.3421e-04
 -1.9160e-02 -2.4645e-02 -1.3791e-02
 -6.1991e-03 -1.3174e-02 -3.6783e-03
    ... 

(510,253,.,.) = 
 -3.3993e-03 -2.7823e-03  7.6715e-03
 -2.0649e-02 -1.2731e-02 -9.4138e-03
 -1.3678e-03 -3.4410e-02 -2.6984e-02

(510,254,.,.) = 
 -3.5651e-04  2.0102e-03  1.4130e-02
 -1.3073e-02 -1.6616e-02 -1.2690e-02
 -3.5934e-02 -4.1700e-02 -3.3968e-02

(510,255,.,.) = 
  2.0470e-02  8.0159e-04 -1.1607e-03
  9.5101e-03  3.0336e-02  2.7362e-02
  1.5588e-02  3.2851e-02  1.3015e-02
      ⋮  

(511, 0 ,.,.) = 
 -1.5574e-02 -3.2971e-02 -3.1939e-02
 -2.2502e-02 -5.7187e-03 -5.6729e-03
 -2.7309e-02 -1.6981e-02  1.2832e-04

(511, 1 ,.,.) = 
 -1.1925e-02 -2.9479e-02 -2.0437e-02
 -2.4408e-02 -2.2069e-02 -1.9965e-03
 -2.3279e-02 -5.5140e-03  2.5630e-02

(511, 2 ,.,.) = 
 -1.6100e-02 -8.2417e-03  1.5266e-04
 -2.6195e-03 -8.2754e-03 -2.9435e-02
 -2.7493e-03 -2.4889e-02 -2.3583e-02
    ... 

(511,253,.,.) = 
  1.7985e-02  1.8594e-02  8.9198e-04
 -1.7319e-02  7.8735e-03 -2.8659e-03
  3.8596e-03  2.9061e-02  2.4188e-02

(511,254,.,.) = 
 -2.6735e-02 -1.4391e-02 -4.0148e-02
 -2.6728e-02 -2.4455e-02 -6.9176e-03
 -5.7244e-02 -2.1995e-04  5.5438e-02

(511,255,.,.) = 
  2.3487e-02  2.7157e-03 -8.4719e-04
  1.7886e-02  5.4860e-03  2.8059e-02
  4.6468e-03  1.8598e-02  1.3761e-03
[torch.FloatTensor of size 512x256x3x3]
), ('layer4.0.bn1.weight', 
 0.2427
 0.2232
 0.2511
 0.2288
 0.2074
 0.2905
 0.2482
 0.3102
 0.2749
 0.2892
 0.2448
 0.1759
 0.2426
 0.2780
 0.2315
 0.2631
 0.3383
 0.2785
 0.2536
 0.2989
 0.2335
 0.2812
 0.3486
 0.2778
 0.2280
 0.2547
 0.3032
 0.2468
 0.2512
 0.2973
 0.2577
 0.3200
 0.2385
 0.2714
 0.2532
 0.2625
 0.3344
 0.2626
 0.1838
 0.2839
 0.2187
 0.2666
 0.2858
 0.2471
 0.2915
 0.2332
 0.2637
 0.2691
 0.2432
 0.2384
 0.2356
 0.2525
 0.2564
 0.2451
 0.2529
 0.2522
 0.2800
 0.3165
 0.2340
 0.2634
 0.2569
 0.1942
 0.2621
 0.2205
 0.2301
 0.2323
 0.2811
 0.1897
 0.2280
 0.3472
 0.2717
 0.3191
 0.2440
 0.2719
 0.2781
 0.2262
 0.3444
 0.2648
 0.2725
 0.2851
 0.2039
 0.2935
 0.2742
 0.2774
 0.2654
 0.2430
 0.2721
 0.2708
 0.3085
 0.2895
 0.2596
 0.2147
 0.3119
 0.3449
 0.2262
 0.2814
 0.2326
 0.2712
 0.2637
 0.2323
 0.3333
 0.2714
 0.2991
 0.2747
 0.2515
 0.2394
 0.2709
 0.2836
 0.2866
 0.2408
 0.2560
 0.2048
 0.2394
 0.2813
 0.3267
 0.2761
 0.2123
 0.2715
 0.2540
 0.2771
 0.3209
 0.1905
 0.3989
 0.2676
 0.2357
 0.2169
 0.3216
 0.3596
 0.2838
 0.2648
 0.2702
 0.2469
 0.2442
 0.2553
 0.2599
 0.2693
 0.2399
 0.2700
 0.2063
 0.2711
 0.2834
 0.2781
 0.2529
 0.2013
 0.2343
 0.2082
 0.3063
 0.1635
 0.2673
 0.2197
 0.2787
 0.2724
 0.2744
 0.2287
 0.2969
 0.2662
 0.2982
 0.2396
 0.3039
 0.2319
 0.2773
 0.2661
 0.2898
 0.2489
 0.3060
 0.2612
 0.2937
 0.3045
 0.2999
 0.2580
 0.2093
 0.2714
 0.2993
 0.2679
 0.2963
 0.2754
 0.2580
 0.2566
 0.2634
 0.2325
 0.2442
 0.2934
 0.2398
 0.2631
 0.2851
 0.2870
 0.2239
 0.2410
 0.2676
 0.2681
 0.2638
 0.2732
 0.2812
 0.2203
 0.2670
 0.2764
 0.2550
 0.3160
 0.2888
 0.2615
 0.2178
 0.2485
 0.2414
 0.2798
 0.2872
 0.2767
 0.2551
 0.2429
 0.2459
 0.3288
 0.3024
 0.2912
 0.2625
 0.3019
 0.2643
 0.2721
 0.2108
 0.2368
 0.2269
 0.1988
 0.2830
 0.2569
 0.2349
 0.2755
 0.2442
 0.2717
 0.2747
 0.2785
 0.2516
 0.2227
 0.2783
 0.2465
 0.2652
 0.2641
 0.2960
 0.2671
 0.2679
 0.2537
 0.2847
 0.2507
 0.2525
 0.2024
 0.2311
 0.2618
 0.2764
 0.3031
 0.2452
 0.2716
 0.2273
 0.2295
 0.2611
 0.2329
 0.2690
 0.2753
 0.2737
 0.2590
 0.2421
 0.2685
 0.3392
 0.3073
 0.1371
 0.3650
 0.2980
 0.2460
 0.2487
 0.2912
 0.2704
 0.2560
 0.2213
 0.2569
 0.2661
 0.2367
 0.2742
 0.2847
 0.3055
 0.2671
 0.2819
 0.2791
 0.2401
 0.2549
 0.2210
 0.3507
 0.2852
 0.2162
 0.2821
 0.2369
 0.2905
 0.2826
 0.2300
 0.2745
 0.2437
 0.2522
 0.2489
 0.2395
 0.2851
 0.2887
 0.2621
 0.2500
 0.2689
 0.2427
 0.3010
 0.3067
 0.2861
 0.2387
 0.2462
 0.2859
 0.2550
 0.2630
 0.2442
 0.2145
 0.2898
 0.2282
 0.2327
 0.2242
 0.2738
 0.2485
 0.2379
 0.3058
 0.2798
 0.2761
 0.2252
 0.2866
 0.2660
 0.3250
 0.2612
 0.2767
 0.3205
 0.2932
 0.3183
 0.2939
 0.3103
 0.2553
 0.2981
 0.3667
 0.3086
 0.2254
 0.2352
 0.2348
 0.2555
 0.2597
 0.2369
 0.3017
 0.2776
 0.2728
 0.3174
 0.2785
 0.2721
 0.2637
 0.2702
 0.3633
 0.2869
 0.2675
 0.3405
 0.2587
 0.2732
 0.2747
 0.2821
 0.2750
 0.2630
 0.2018
 0.2358
 0.3034
 0.3155
 0.3013
 0.2775
 0.2511
 0.2945
 0.1605
 0.2825
 0.2964
 0.2194
 0.2061
 0.2332
 0.2348
 0.2663
 0.2543
 0.2927
 0.2215
 0.2521
 0.2827
 0.1993
 0.2453
 0.2597
 0.2654
 0.2757
 0.2650
 0.2444
 0.2949
 0.2308
 0.3071
 0.1904
 0.3024
 0.2786
 0.3659
 0.2966
 0.2746
 0.2449
 0.2201
 0.2564
 0.2853
 0.2392
 0.2457
 0.2467
 0.2374
 0.2664
 0.2460
 0.3182
 0.1793
 0.2379
 0.2596
 0.2847
 0.2452
 0.1974
 0.2388
 0.2949
 0.2879
 0.2786
 0.2765
 0.3296
 0.2530
 0.2690
 0.2547
 0.2333
 0.2348
 0.2690
 0.2718
 0.2679
 0.2516
 0.2710
 0.2366
 0.2601
 0.2764
 0.2880
 0.2008
 0.2637
 0.2263
 0.2511
 0.2604
 0.2805
 0.2989
 0.2965
 0.2597
 0.2767
 0.2553
 0.2959
 0.2512
 0.2925
 0.3008
 0.2423
 0.2394
 0.2708
 0.3704
 0.2879
 0.2532
 0.2248
 0.2023
 0.2279
 0.2366
 0.3082
 0.2980
 0.2909
 0.2777
 0.4293
 0.2658
 0.2940
 0.2418
 0.2816
 0.3247
 0.2647
 0.2216
 0.2758
 0.2421
 0.2078
 0.2332
 0.2271
 0.2611
 0.3650
 0.2017
 0.2598
 0.2160
 0.2641
 0.1408
 0.2664
 0.2502
 0.2553
 0.2227
 0.2417
 0.2696
 0.2388
 0.2833
 0.2333
 0.2667
 0.2224
 0.2691
 0.2710
 0.2459
 0.2674
 0.2430
 0.2593
 0.1851
 0.2950
 0.3664
 0.2212
 0.3026
 0.1840
 0.3443
 0.2140
 0.3717
 0.2360
 0.3081
 0.2638
 0.2233
[torch.FloatTensor of size 512]
), ('layer4.0.bn1.bias', 
-0.1986
-0.1593
-0.2054
-0.1598
-0.1268
-0.3226
-0.1597
-0.3477
-0.2497
-0.2730
-0.2319
-0.0286
-0.1899
-0.2813
-0.1733
-0.2412
-0.3712
-0.2747
-0.2053
-0.2585
-0.1535
-0.2748
-0.3241
-0.2525
-0.1906
-0.2252
-0.3436
-0.2202
-0.1664
-0.2716
-0.1920
-0.3399
-0.2026
-0.2972
-0.2616
-0.2238
-0.2486
-0.2606
-0.0893
-0.3572
-0.1283
-0.2583
-0.2450
-0.1523
-0.3165
-0.1445
-0.2522
-0.1963
-0.1794
-0.1071
-0.1662
-0.2053
-0.2530
-0.1447
-0.2517
-0.2062
-0.2817
-0.3376
-0.1382
-0.2389
-0.2557
-0.0156
-0.2169
-0.1763
-0.1486
-0.2122
-0.2002
-0.0716
-0.2089
-0.3580
-0.2588
-0.3599
-0.1528
-0.2107
-0.2925
-0.1855
-0.3970
-0.1257
-0.2574
-0.2412
-0.0863
-0.3065
-0.2701
-0.3380
-0.2485
-0.1935
-0.2987
-0.2279
-0.3600
-0.2764
-0.2480
-0.1208
-0.3378
-0.2661
-0.1677
-0.2470
-0.2152
-0.2591
-0.1936
-0.1543
-0.4117
-0.1570
-0.2372
-0.2997
-0.2124
-0.2034
-0.1848
-0.3070
-0.3438
-0.1839
-0.1937
-0.0916
-0.2338
-0.3558
-0.1967
-0.3303
-0.1398
-0.2177
-0.1665
-0.1857
-0.3115
-0.1049
-0.4229
-0.2408
-0.1320
-0.1631
-0.3378
-0.3300
-0.3183
-0.2268
-0.2787
-0.1950
-0.1950
-0.1463
-0.2437
-0.2297
-0.1282
-0.2164
-0.1179
-0.2437
-0.2611
-0.2656
-0.1948
-0.1208
-0.1668
-0.1351
-0.2713
-0.0560
-0.2243
-0.1318
-0.2356
-0.2720
-0.2051
-0.1736
-0.2891
-0.2627
-0.3358
-0.1779
-0.2309
-0.1477
-0.2685
-0.1882
-0.2629
-0.1983
-0.3522
-0.1905
-0.2778
-0.3395
-0.2895
-0.2240
-0.1150
-0.2462
-0.2426
-0.2581
-0.3133
-0.2315
-0.2271
-0.2077
-0.2109
-0.1371
-0.1323
-0.2529
-0.1716
-0.2532
-0.2277
-0.2084
-0.1803
-0.1868
-0.2404
-0.2166
-0.2197
-0.2870
-0.3062
-0.1507
-0.1054
-0.2199
-0.2415
-0.3310
-0.2700
-0.1568
-0.1449
-0.2610
-0.1828
-0.2648
-0.3134
-0.2937
-0.2687
-0.2115
-0.2164
-0.4522
-0.2999
-0.3032
-0.2292
-0.3099
-0.2642
-0.2695
-0.1441
-0.1671
-0.1570
-0.1415
-0.2222
-0.1736
-0.1481
-0.2573
-0.2060
-0.1703
-0.2360
-0.1770
-0.2132
-0.2016
-0.3001
-0.1518
-0.2086
-0.2805
-0.2698
-0.2292
-0.1293
-0.2514
-0.2600
-0.2454
-0.1744
-0.1029
-0.1679
-0.2353
-0.2007
-0.3363
-0.1640
-0.2430
-0.1699
-0.1697
-0.1837
-0.1625
-0.2415
-0.2687
-0.2305
-0.2029
-0.2209
-0.2240
-0.2675
-0.3233
 0.1462
-0.4777
-0.2376
-0.1489
-0.1462
-0.3055
-0.2234
-0.1697
-0.1952
-0.2131
-0.2340
-0.2039
-0.3054
-0.2596
-0.3470
-0.2176
-0.2706
-0.2897
-0.1729
-0.2300
-0.1066
-0.3556
-0.2912
-0.1777
-0.2007
-0.1699
-0.3009
-0.3046
-0.1693
-0.2602
-0.2053
-0.1810
-0.1808
-0.1730
-0.3757
-0.1808
-0.1805
-0.1895
-0.2643
-0.2075
-0.2365
-0.1975
-0.3064
-0.1984
-0.1811
-0.3676
-0.1198
-0.1485
-0.1770
-0.0781
-0.2052
-0.1360
-0.1417
-0.1691
-0.2395
-0.1785
-0.1747
-0.2484
-0.2717
-0.3096
-0.1465
-0.2239
-0.2584
-0.3572
-0.2311
-0.2878
-0.3841
-0.3475
-0.3896
-0.1891
-0.2861
-0.2431
-0.2837
-0.4365
-0.3353
-0.1802
-0.1976
-0.1529
-0.1978
-0.2535
-0.1954
-0.2667
-0.2813
-0.2487
-0.3070
-0.2339
-0.2212
-0.1925
-0.2224
-0.4178
-0.3151
-0.2663
-0.3581
-0.1935
-0.2385
-0.2424
-0.1850
-0.2265
-0.1803
-0.0777
-0.1492
-0.3361
-0.4133
-0.3123
-0.2745
-0.1247
-0.3102
 0.0041
-0.1981
-0.3301
-0.2047
-0.1053
-0.1653
-0.1634
-0.1116
-0.2314
-0.3191
-0.1818
-0.2657
-0.2220
-0.1029
-0.1999
-0.2702
-0.2139
-0.2256
-0.2653
-0.1630
-0.3322
-0.1617
-0.3446
 0.0288
-0.2456
-0.3171
-0.3580
-0.2857
-0.2520
-0.2031
-0.1522
-0.2203
-0.3490
-0.1685
-0.1424
-0.1602
-0.1553
-0.3057
-0.2420
-0.3536
-0.0551
-0.0987
-0.2272
-0.2619
-0.2035
-0.0906
-0.1976
-0.3040
-0.2732
-0.3161
-0.2102
-0.3384
-0.1740
-0.1475
-0.1842
-0.1823
-0.1151
-0.2183
-0.2010
-0.2659
-0.2205
-0.2567
-0.1633
-0.2213
-0.2658
-0.2938
-0.1069
-0.2522
-0.1103
-0.2216
-0.2244
-0.2908
-0.2176
-0.3605
-0.2374
-0.2391
-0.2251
-0.2256
-0.1339
-0.1970
-0.2970
-0.2206
-0.2051
-0.2229
-0.3602
-0.2923
-0.2498
-0.1466
-0.0979
-0.1686
-0.2158
-0.2881
-0.3002
-0.2760
-0.2496
-0.3536
-0.2868
-0.3251
-0.1847
-0.3062
-0.3861
-0.2650
-0.1339
-0.1846
-0.1630
-0.0630
-0.1717
-0.1415
-0.1906
-0.4611
-0.1391
-0.1920
-0.1369
-0.1647
-0.0055
-0.2598
-0.2653
-0.2319
-0.1780
-0.1913
-0.2055
-0.1891
-0.2625
-0.1633
-0.2497
-0.1696
-0.1907
-0.2431
-0.1825
-0.2607
-0.1943
-0.2361
-0.0581
-0.2758
-0.2593
-0.1466
-0.3589
-0.0439
-0.3440
-0.1089
-0.4219
-0.1503
-0.2792
-0.3035
-0.1156
[torch.FloatTensor of size 512]
), ('layer4.0.bn1.running_mean', 
-0.1124
-0.1164
-0.1293
-0.4187
-0.3841
-0.4075
-0.5318
-0.1824
-0.7574
-0.8394
-0.1911
-0.2697
-0.4389
-0.2669
-0.4330
-0.4768
-0.4965
-0.4738
-0.1415
-0.4245
-0.3285
-0.5264
-0.8126
-0.4011
-0.3142
-0.4584
-0.1663
-0.4856
-0.3431
-0.5183
-0.4328
-0.6726
-0.4332
-0.4050
-0.1831
-0.4535
-1.0135
-0.0091
-0.4773
-0.3841
-0.5013
-0.7427
-0.4992
-0.5870
-0.3608
-0.4751
-0.6086
-0.3768
-0.6925
-1.2176
-0.5161
-0.4123
-0.3214
-0.1537
-0.3330
-0.3304
-0.4375
-0.5819
-0.4770
-0.5944
-0.2509
 0.2625
 0.1042
-0.3361
-0.4330
-0.4002
-0.3678
-0.3667
-0.2196
-0.6465
-0.5887
-0.3854
-0.3306
-0.3786
-0.2318
-0.0974
-1.0318
-0.8801
-0.3272
-0.4941
-0.6038
-0.4083
-0.1259
-0.1156
-0.1786
-0.5553
-0.7105
-0.2667
-0.1680
-0.0074
-0.2463
-0.3361
 0.1572
-0.6019
-0.4686
-0.3578
-0.5812
-0.2113
-0.3591
-0.5293
-0.7721
-0.5846
-0.1129
-0.4135
-0.4965
-0.6759
-0.4077
-0.4894
-0.3329
-0.3689
-0.0139
-0.1107
-0.3289
 0.0494
-0.1049
 0.0325
-0.2145
-0.0585
-0.3660
-0.2958
-0.0878
-0.6473
-0.8958
-0.5207
-0.4756
-0.3351
-0.5421
 0.0924
-0.9209
 0.0610
 0.0737
-0.3680
-0.7011
-0.5918
-0.5081
-0.4591
-0.5154
-0.3190
-0.6232
-0.5512
-0.4814
-0.4307
-0.2918
-0.2123
-0.2189
-0.4028
-0.1570
-0.1099
-0.3914
-0.3886
-0.1502
-0.4527
-0.1671
-0.2021
-0.5321
-0.2644
-0.5207
-0.5534
-0.5519
-0.3069
-0.2326
-0.5709
-0.6164
-0.0115
-0.6641
-0.5729
-0.2750
-0.5720
-0.7684
-0.4361
-0.3526
-0.0426
-0.1350
-0.8835
-0.3217
-0.1706
-0.4284
-0.4497
-0.7264
-0.9589
-0.3439
-0.6800
-0.4520
-0.5459
-0.2993
-0.4854
-0.1415
-0.0290
-0.2729
-0.1666
-0.2346
-0.5397
-0.4724
-0.5606
-0.5647
-0.3614
-0.5158
-0.2728
-0.0432
-0.9420
-0.5284
-0.6236
-0.3835
-0.6825
-0.5347
-0.4121
-0.2656
-0.5761
-0.3379
-0.7679
-0.8335
-0.5631
-0.3712
-0.0170
-0.5099
-0.5196
-0.2617
-0.5632
-0.6310
-0.5244
-0.2192
-0.4241
-0.2130
-0.2760
-0.1772
-0.5719
-0.4033
-0.7874
-0.3226
-0.2671
-0.3425
-0.7110
-0.4422
-0.1318
-0.3841
-0.4050
-0.5102
-0.4865
-0.5415
-0.4790
-0.4867
-0.2482
-0.5347
 0.1373
-0.9281
-0.3791
-0.0393
-0.6500
-0.0687
-0.2550
-0.7833
-0.1906
 0.0692
-0.5203
 0.1102
-0.4691
-0.2165
-0.4058
-0.5252
-0.5489
-0.2243
-0.8912
-0.5753
-0.3787
-0.4660
-0.4167
-0.7948
-0.2214
 0.2169
-0.3230
-0.5716
-0.4523
-0.2235
-0.5354
-0.6187
-0.6403
-0.5779
-0.6974
-0.4531
-0.4559
-0.6742
-0.8658
-0.6413
-0.3098
 0.4122
-0.4813
-0.5268
 0.1341
-0.1123
-0.3868
-0.6683
-0.4020
-0.4705
-0.5263
-0.4912
-0.4345
 0.0675
-0.7317
-0.3467
-0.4757
-0.4845
-0.1666
-0.5546
-0.2875
-0.5574
-0.2929
-0.9178
 0.0932
-0.3473
-0.2659
-0.8700
-0.4143
-0.6691
-0.3896
-0.3993
-0.3583
-0.9644
-0.5416
-0.3117
 0.1785
-0.4971
-0.8436
-0.6282
-0.5113
-0.0999
-0.3834
-0.4330
-0.4084
-0.4269
-0.5670
-0.5599
 0.2002
-0.3582
-0.7621
-0.4257
-0.4749
-0.2672
-0.4449
-0.4631
-0.5055
-0.3216
-0.5426
-0.2615
-0.5695
-0.2981
-0.8440
-0.6237
-0.6642
-0.4691
-0.9326
-0.6129
 0.0988
-0.8381
-0.2735
-0.2299
-0.5881
-0.2101
-0.0520
-0.8218
-0.8467
-0.1617
-0.2244
-0.4366
-0.1205
-0.5751
-0.6796
-0.4050
-0.0679
-0.8405
-0.4547
-0.1708
-0.0480
-0.1587
-0.3734
-0.8896
 0.0825
-0.7593
-0.4594
-0.2676
-0.1145
-0.3023
-0.2456
-0.3645
-0.3545
-0.8241
-0.1730
-0.2575
-0.0103
-0.3935
-0.7034
-0.2919
-0.2793
-0.3966
-0.7128
-0.5211
-0.7188
-0.4073
-0.2814
-0.2293
-0.4529
-0.6779
-0.0934
-0.3272
-0.3638
-0.2048
-0.2720
-0.3683
-0.3334
-0.6409
-0.2807
-0.4246
-0.0683
-0.3437
-0.1466
-0.6256
-0.4319
-0.1858
-0.1817
-0.7679
-0.3353
-0.9588
-0.1952
-0.2006
-0.1280
-0.4047
-0.2239
-0.6247
-0.3422
-0.5595
-0.7026
 0.0354
-0.5814
-0.7382
-0.3904
-0.3409
-0.8630
-0.3453
-0.1569
-0.6717
-0.5216
-0.2329
-0.3564
-0.7584
-0.0124
-0.5398
-0.7708
-0.3359
-0.2909
-0.3133
-0.3400
-0.5624
-0.5493
-0.4637
-0.4022
-0.3580
-0.3325
-0.3384
-0.2277
-0.2697
-0.2907
-0.2164
-0.2489
-0.0573
-0.3735
-0.3996
-0.3451
-0.4648
-0.7143
-0.2062
-0.2513
-0.4464
-0.2624
-0.1615
-0.3099
-0.7480
-0.7751
-0.3383
-0.2875
-0.5976
-0.3752
-0.9447
 0.9778
-0.5259
-0.0119
-0.3122
-0.3802
-0.7690
-0.3534
-0.3268
-0.3882
-0.4871
-0.4404
-0.6773
-0.4915
-0.4891
-0.3313
-0.6497
-0.5303
-0.6193
-0.8063
-0.4356
-0.0466
-0.6772
-0.7360
-0.6388
-0.4199
-0.4575
-0.5776
-0.5648
-0.2510
-0.2753
-0.4860
[torch.FloatTensor of size 512]
), ('layer4.0.bn1.running_var', 
 0.1030
 0.0999
 0.1279
 0.0991
 0.1004
 0.1214
 0.1621
 0.1000
 0.1600
 0.1227
 0.1053
 0.1421
 0.1020
 0.1322
 0.1003
 0.1064
 0.1366
 0.1246
 0.1300
 0.1984
 0.1163
 0.1496
 0.1630
 0.1266
 0.1066
 0.1212
 0.1068
 0.1123
 0.1615
 0.1656
 0.1303
 0.1438
 0.1148
 0.1237
 0.1166
 0.1157
 0.1930
 0.1042
 0.0904
 0.0956
 0.1063
 0.0841
 0.1163
 0.1349
 0.1176
 0.1648
 0.1115
 0.1222
 0.1269
 0.1880
 0.1090
 0.1280
 0.1211
 0.1447
 0.0857
 0.1207
 0.1129
 0.1204
 0.1305
 0.1179
 0.1167
 0.2456
 0.2022
 0.0975
 0.1263
 0.1045
 0.2082
 0.0831
 0.1038
 0.1231
 0.1124
 0.1105
 0.1467
 0.1336
 0.1288
 0.1107
 0.1366
 0.1815
 0.1282
 0.1306
 0.1200
 0.1056
 0.1189
 0.1204
 0.1113
 0.0986
 0.1033
 0.1220
 0.1178
 0.1497
 0.1115
 0.1130
 0.1207
 0.1372
 0.0990
 0.1461
 0.0985
 0.1184
 0.1507
 0.1284
 0.1085
 0.1406
 0.1754
 0.1095
 0.0977
 0.0941
 0.1799
 0.1073
 0.0796
 0.1153
 0.1189
 0.1452
 0.1099
 0.1361
 0.2592
 0.0810
 0.1098
 0.1573
 0.1272
 0.1837
 0.1360
 0.0959
 0.1403
 0.1303
 0.1342
 0.0965
 0.1285
 0.2215
 0.1247
 0.1188
 0.1204
 0.1163
 0.1006
 0.1711
 0.1036
 0.1211
 0.1361
 0.1193
 0.0970
 0.1104
 0.1331
 0.1250
 0.1168
 0.0885
 0.1163
 0.0893
 0.1681
 0.0934
 0.1244
 0.1188
 0.1640
 0.1081
 0.1310
 0.1239
 0.1269
 0.0972
 0.1211
 0.1043
 0.2294
 0.1208
 0.1018
 0.1148
 0.1472
 0.0975
 0.1309
 0.1317
 0.1914
 0.1081
 0.1491
 0.1132
 0.0993
 0.1167
 0.1473
 0.1204
 0.1012
 0.1201
 0.1062
 0.1190
 0.1336
 0.1204
 0.1411
 0.1816
 0.1134
 0.1114
 0.1735
 0.1775
 0.1215
 0.1389
 0.0983
 0.1396
 0.1208
 0.1063
 0.1136
 0.1248
 0.2639
 0.1485
 0.1077
 0.1061
 0.1551
 0.1727
 0.1251
 0.1360
 0.1216
 0.1526
 0.1103
 0.1045
 0.0857
 0.1100
 0.1190
 0.1255
 0.1585
 0.1270
 0.1328
 0.1256
 0.1079
 0.1283
 0.0715
 0.1163
 0.1375
 0.0821
 0.1461
 0.1210
 0.1227
 0.1141
 0.1072
 0.1492
 0.1203
 0.2086
 0.1131
 0.0747
 0.1385
 0.1496
 0.1287
 0.0992
 0.1335
 0.1515
 0.1861
 0.1131
 0.1649
 0.0937
 0.1362
 0.0959
 0.0870
 0.1182
 0.1449
 0.1577
 0.1250
 0.1298
 0.1252
 0.1016
 0.1787
 0.1136
 0.1204
 0.1126
 0.1295
 0.1371
 0.1136
 0.1469
 0.1608
 0.0994
 0.2343
 0.1397
 0.1145
 0.1336
 0.1430
 0.1121
 0.1389
 0.1633
 0.1050
 0.1538
 0.1095
 0.1131
 0.1005
 0.1411
 0.1132
 0.1021
 0.1399
 0.1045
 0.1220
 0.1303
 0.1541
 0.1425
 0.1217
 0.0941
 0.2309
 0.0997
 0.0928
 0.1263
 0.1255
 0.0886
 0.1247
 0.1293
 0.1076
 0.1414
 0.0935
 0.1377
 0.1662
 0.1451
 0.1051
 0.1116
 0.1321
 0.1895
 0.1370
 0.1350
 0.1285
 0.0951
 0.1843
 0.2134
 0.1534
 0.1752
 0.1721
 0.0990
 0.1510
 0.1052
 0.1361
 0.1463
 0.1610
 0.1596
 0.1157
 0.0883
 0.1122
 0.1188
 0.1181
 0.1356
 0.1305
 0.1074
 0.1093
 0.1180
 0.0961
 0.2218
 0.1376
 0.1151
 0.1370
 0.1296
 0.1005
 0.0916
 0.1126
 0.0927
 0.1432
 0.0977
 0.1235
 0.1426
 0.1382
 0.1386
 0.1177
 0.1315
 0.1288
 0.1192
 0.1377
 0.1368
 0.1468
 0.1088
 0.1311
 0.1216
 0.1078
 0.1238
 0.1370
 0.1052
 0.1886
 0.1694
 0.1326
 0.1314
 0.1080
 0.1096
 0.1218
 0.1724
 0.1309
 0.0959
 0.1403
 0.1235
 0.0953
 0.1568
 0.1517
 0.1197
 0.2459
 0.1258
 0.0967
 0.0933
 0.0624
 0.1311
 0.0904
 0.1298
 0.1141
 0.1106
 0.1079
 0.1113
 0.1231
 0.1412
 0.1160
 0.1561
 0.2678
 0.1610
 0.1171
 0.1981
 0.1232
 0.1209
 0.1024
 0.1028
 0.1370
 0.0792
 0.1250
 0.1407
 0.1429
 0.1258
 0.1135
 0.1144
 0.1183
 0.1113
 0.1903
 0.1068
 0.1368
 0.1185
 0.1132
 0.1182
 0.1056
 0.0920
 0.1041
 0.1524
 0.1525
 0.1355
 0.2332
 0.1436
 0.1497
 0.1969
 0.1629
 0.1681
 0.1129
 0.1383
 0.1483
 0.1190
 0.1353
 0.1182
 0.1201
 0.1007
 0.1146
 0.1776
 0.1119
 0.1096
 0.1113
 0.1581
 0.0983
 0.1244
 0.1458
 0.1137
 0.1371
 0.1809
 0.2130
 0.1372
 0.0939
 0.1047
 0.1311
 0.1918
 0.1234
 0.0939
 0.1210
 0.1386
 0.0903
 0.1178
 0.1601
 0.1571
 0.1462
 0.1532
 0.2961
 0.0971
 0.1383
 0.1163
 0.0939
 0.1179
 0.1066
 0.1472
 0.1305
 0.1430
 0.1198
 0.1306
 0.1825
 0.1339
 0.1046
 0.0709
 0.1584
 0.1002
 0.1495
 0.1604
 0.1422
 0.1146
 0.0903
 0.0900
 0.1229
 0.1567
 0.1262
 0.1163
 0.1507
 0.1026
 0.1223
 0.1404
 0.1365
 0.1182
 0.0923
 0.1189
 0.1092
 0.1069
 0.1234
 0.2338
 0.1229
 0.1110
 0.0989
 0.1133
 0.0932
 0.1583
 0.1236
 0.1395
 0.1109
 0.1057
[torch.FloatTensor of size 512]
), ('layer4.0.conv2.weight', 
( 0 , 0 ,.,.) = 
  1.6218e-04 -1.4720e-02 -1.7000e-02
 -1.2850e-02 -3.3085e-02 -3.6656e-02
  2.7812e-02  1.7691e-02 -1.8369e-02

( 0 , 1 ,.,.) = 
  1.0528e-02  3.1379e-02  2.4801e-02
 -1.2698e-02 -2.9453e-02 -1.1834e-02
 -9.4094e-03 -8.9462e-03 -3.1349e-02

( 0 , 2 ,.,.) = 
 -7.8447e-03 -2.9256e-02  5.3590e-03
 -1.3791e-02 -1.1116e-02  5.0388e-03
 -2.4919e-03  7.3514e-03  5.4013e-03
    ... 

( 0 ,509,.,.) = 
 -1.0276e-03 -1.0275e-02 -2.9986e-02
 -3.8465e-03  1.9549e-03 -1.6291e-02
 -1.8100e-03  8.3778e-03 -8.5481e-03

( 0 ,510,.,.) = 
 -1.8196e-02 -1.3533e-02 -1.7457e-02
  2.2457e-02  5.7402e-02  1.9325e-02
 -2.4977e-02 -3.2113e-02 -8.1780e-03

( 0 ,511,.,.) = 
  3.6550e-03  4.9358e-03 -5.7597e-03
 -1.6875e-02  1.3999e-04  3.7629e-04
 -2.6272e-03  1.0947e-03  1.1145e-03
      ⋮  

( 1 , 0 ,.,.) = 
  1.4018e-02  3.9198e-03 -1.7189e-03
 -1.3175e-03  4.3503e-04 -1.1798e-02
 -9.8003e-03 -1.7693e-02 -1.9910e-02

( 1 , 1 ,.,.) = 
 -1.4957e-02 -1.9796e-02 -2.8724e-02
  5.8908e-03 -1.5228e-02 -5.6715e-03
  2.9284e-03 -1.8028e-02 -7.1433e-03

( 1 , 2 ,.,.) = 
 -1.1625e-02 -3.3804e-02 -1.0025e-02
 -1.6606e-02 -5.5716e-02 -2.3204e-02
 -2.5758e-02 -4.3135e-02 -2.5901e-02
    ... 

( 1 ,509,.,.) = 
 -1.5007e-02 -1.4333e-02 -2.5937e-03
 -2.3078e-02 -1.5820e-02 -2.2818e-03
 -4.1318e-03 -8.0353e-03 -2.3236e-03

( 1 ,510,.,.) = 
 -1.8531e-02 -1.8004e-02 -2.8084e-02
 -3.6680e-02 -6.8641e-02 -5.2469e-02
 -1.1712e-02 -2.4334e-02 -1.6733e-02

( 1 ,511,.,.) = 
 -2.2078e-02 -2.9163e-02 -3.8717e-03
 -7.0301e-03  1.6718e-02  5.4339e-03
 -1.3131e-02  1.1999e-02 -1.7480e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -5.2378e-03 -3.4890e-03 -2.0851e-03
  1.5306e-02 -2.1752e-02 -8.7682e-03
  2.2460e-02  9.9175e-03 -3.3635e-03

( 2 , 1 ,.,.) = 
  7.4677e-03 -9.1762e-03 -9.2569e-05
  1.9441e-04  1.2344e-03 -8.9978e-03
 -5.1243e-04  2.1850e-04 -4.8828e-03

( 2 , 2 ,.,.) = 
  1.7078e-02  3.3955e-03  9.3503e-03
  2.0334e-02 -1.0621e-04 -8.2017e-05
  1.0706e-02 -1.8414e-03  1.0828e-02
    ... 

( 2 ,509,.,.) = 
  3.2008e-02  2.3494e-02  2.5386e-02
  1.9307e-02  2.3924e-02  2.8972e-02
  9.9003e-03  2.0158e-02  2.2655e-02

( 2 ,510,.,.) = 
 -9.8395e-03 -1.1114e-02 -3.7696e-03
 -2.9508e-02 -3.6956e-02 -1.8228e-02
 -1.3663e-03 -2.5845e-03  1.0352e-02

( 2 ,511,.,.) = 
 -7.3867e-03 -2.5413e-02 -2.1942e-02
 -1.6699e-02 -1.5133e-02 -1.3030e-02
 -2.0090e-02  3.7970e-03 -1.0341e-02
...     
      ⋮  

(509, 0 ,.,.) = 
 -1.6157e-02 -1.6883e-02 -2.8328e-04
 -7.7759e-03 -2.4465e-03 -1.4641e-02
  2.4639e-02  3.9862e-02  2.1048e-02

(509, 1 ,.,.) = 
  2.4491e-03 -9.3885e-03 -1.1786e-02
  2.5301e-02  2.5625e-04  7.1335e-03
  2.2342e-02  1.9042e-02  7.2526e-03

(509, 2 ,.,.) = 
 -1.4652e-02 -2.7802e-02 -4.3564e-03
 -1.7961e-02 -4.3846e-02  2.7409e-03
 -4.7968e-03 -8.4231e-03  1.2070e-02
    ... 

(509,509,.,.) = 
 -2.0171e-02 -3.3546e-02 -1.6728e-02
 -1.7847e-02 -5.1713e-02 -2.6780e-02
 -1.3145e-03 -4.3181e-03 -9.6373e-03

(509,510,.,.) = 
 -5.3917e-03 -2.0410e-04  2.7798e-03
 -9.6882e-04 -2.5141e-02  1.4804e-02
  2.8748e-02  9.0832e-03  4.2548e-02

(509,511,.,.) = 
 -1.5698e-02 -1.9303e-02 -9.1469e-03
 -2.0025e-02 -1.1131e-02 -3.3902e-02
 -5.7436e-03 -7.3640e-03 -1.0044e-02
      ⋮  

(510, 0 ,.,.) = 
 -8.8612e-03 -4.5370e-03 -1.2354e-02
 -5.9245e-03 -1.7058e-02 -2.8041e-02
 -1.0435e-02  7.6695e-04 -1.0578e-02

(510, 1 ,.,.) = 
  9.5200e-03 -5.1975e-03  1.2947e-02
  4.4305e-03 -2.3992e-02 -8.4569e-04
  4.6608e-03  9.6787e-03  8.2174e-03

(510, 2 ,.,.) = 
  5.1559e-03  4.4635e-04 -7.9934e-03
  3.3069e-03  1.4450e-02  8.9234e-03
  6.3402e-03  1.9043e-02  1.9021e-02
    ... 

(510,509,.,.) = 
  7.6964e-03 -1.3777e-02  6.0539e-03
 -1.5745e-03 -2.3391e-02 -1.0052e-02
  9.5183e-03 -1.2251e-02  2.2436e-03

(510,510,.,.) = 
  1.0375e-02  3.5875e-03 -5.7940e-04
  7.0412e-03 -1.0673e-02 -4.9120e-03
 -2.6034e-03  1.1306e-02  7.0696e-03

(510,511,.,.) = 
 -1.7509e-02 -2.3182e-02 -1.7897e-02
 -1.7769e-03  1.9672e-03 -7.3220e-03
 -6.6833e-03  9.8286e-03  2.0653e-03
      ⋮  

(511, 0 ,.,.) = 
  2.8375e-02 -8.1936e-03  1.8009e-02
  1.5829e-02 -1.3571e-02 -1.9335e-02
  4.0766e-03 -1.5722e-02 -5.0620e-02

(511, 1 ,.,.) = 
 -5.5310e-03 -1.8996e-02 -7.9436e-03
  1.3825e-03 -4.9608e-02  1.7256e-03
  7.6629e-03 -7.6101e-03  1.2541e-02

(511, 2 ,.,.) = 
  1.8052e-02  3.1718e-02  4.2556e-03
 -3.6760e-03  3.0490e-03 -1.2264e-02
 -8.9404e-03 -1.6604e-02  1.6348e-03
    ... 

(511,509,.,.) = 
  5.3192e-03  1.8204e-02  1.8114e-02
 -6.1202e-03  1.5905e-03  2.0264e-02
 -1.1471e-02 -1.5697e-02  9.0871e-03

(511,510,.,.) = 
  3.7707e-03  8.0599e-03  1.8290e-02
  1.7257e-02  6.9638e-03  1.8746e-02
  1.0751e-02  1.3663e-02 -1.0081e-03

(511,511,.,.) = 
  1.9711e-02 -1.4569e-02 -2.4663e-02
  2.5966e-03 -2.4807e-02  9.3861e-03
 -1.2876e-03  1.3974e-03  1.3434e-02
[torch.FloatTensor of size 512x512x3x3]
), ('layer4.0.bn2.weight', 
 0.4474
 0.5138
 0.4335
 0.3421
 0.3855
 0.3495
 0.3741
 0.5836
 0.4327
 0.5043
 0.4618
 0.3866
 0.3498
 0.4798
 0.3310
 0.3913
 0.3880
 0.5225
 0.3975
 0.3292
 0.4151
 0.4458
 0.3970
 0.3614
 0.3914
 0.4633
 0.3463
 0.3644
 0.3272
 0.4584
 0.4280
 0.4538
 0.4030
 0.4673
 0.4209
 0.3987
 0.4233
 0.3876
 0.4212
 0.3460
 0.3522
 0.3744
 0.4550
 0.2888
 0.4590
 0.4817
 0.4450
 0.5110
 0.4052
 0.4247
 0.3558
 0.3075
 0.4462
 0.4724
 0.4253
 0.3884
 0.4492
 0.3727
 0.4630
 0.3985
 0.3512
 0.3665
 0.3860
 0.5082
 0.4022
 0.3458
 0.4805
 0.5390
 0.4223
 0.4275
 0.4590
 0.4736
 0.3673
 0.5405
 0.3243
 0.5178
 0.4743
 0.3506
 0.3759
 0.4328
 0.3867
 0.4591
 0.3843
 0.4982
 0.5288
 0.3946
 0.4589
 0.3197
 0.4676
 0.4806
 0.4308
 0.4235
 0.3284
 0.3877
 0.4140
 0.4469
 0.4041
 0.4407
 0.4356
 0.5120
 0.5059
 0.4628
 0.4585
 0.3311
 0.3424
 0.4150
 0.5170
 0.4593
 0.5228
 0.4252
 0.4214
 0.4995
 0.4098
 0.5380
 0.4874
 0.3719
 0.4649
 0.4320
 0.3277
 0.3743
 0.4360
 0.4838
 0.4399
 0.3763
 0.4150
 0.5147
 0.5012
 0.4382
 0.3655
 0.4037
 0.4498
 0.4720
 0.3914
 0.3237
 0.3208
 0.3224
 0.4291
 0.4009
 0.3947
 0.3779
 0.4349
 0.4120
 0.3274
 0.4334
 0.3740
 0.4189
 0.4288
 0.3071
 0.4260
 0.3410
 0.4375
 0.4407
 0.3750
 0.5853
 0.4518
 0.5045
 0.3005
 0.4968
 0.4155
 0.3755
 0.5514
 0.4146
 0.4677
 0.1404
 0.5001
 0.4193
 0.4246
 0.4452
 0.5109
 0.4488
 0.4574
 0.3896
 0.4145
 0.4497
 0.4245
 0.3971
 0.3957
 0.4072
 0.5305
 0.4986
 0.3733
 0.4280
 0.3469
 0.4178
 0.3766
 0.4029
 0.3814
 0.4493
 0.5132
 0.4080
 0.4155
 0.3635
 0.4391
 0.3489
 0.4228
 0.4833
 0.3494
 0.4406
 0.3795
 0.4298
 0.4910
 0.3878
 0.6299
 0.4322
 0.5436
 0.4140
 0.4312
 0.3161
 0.3612
 0.3597
 0.4281
 0.4506
 0.4294
 0.3646
 0.4110
 0.4038
 0.4098
 0.3901
 0.3928
 0.5421
 0.3629
 0.4078
 0.4586
 0.4217
 0.3953
 0.3997
 0.3838
 0.4374
 0.3576
 0.4217
 0.4128
 0.3904
 0.4137
 0.5145
 0.4039
 0.3577
 0.4429
 0.5639
 0.3848
 0.6104
 0.4482
 0.6203
 0.5336
 0.3480
 0.5401
 0.6044
 0.4077
 0.3469
 0.4281
 0.4631
 0.5948
 0.3479
 0.3689
 0.3658
 0.3191
 0.5492
 0.3410
 0.5386
 0.4041
 0.3373
 0.4186
 0.5187
 0.3933
 0.3188
 0.3502
 0.3736
 0.4238
 0.4752
 0.3322
 0.5078
 0.4317
 0.5318
 0.4413
 0.5510
 0.5648
 0.4130
 0.4017
 0.4304
 0.4077
 0.4285
 0.4360
 0.3749
 0.4261
 0.3905
 0.3030
 0.3412
 0.3768
 0.4507
 0.3127
 0.4592
 0.4298
 0.3936
 0.3106
 0.3869
 0.3594
 0.4046
 0.4722
 0.4373
 0.3902
 0.3515
 0.4448
 0.4299
 0.4347
 0.4693
 0.4807
 0.2549
 0.4171
 0.4387
 0.4156
 0.3976
 0.4092
 0.4953
 0.4824
 0.3468
 0.4382
 0.4179
 0.4668
 0.3299
 0.5986
 0.4949
 0.4167
 0.4996
 0.4528
 0.4550
 0.4945
 0.3415
 0.4658
 0.4356
 0.3976
 0.5439
 0.4643
 0.5122
 0.4669
 0.4463
 0.4810
 0.3492
 0.3961
 0.3593
 0.4053
 0.3878
 0.3959
 0.5001
 0.2808
 0.5470
 0.4448
 0.4894
 0.4621
 0.3417
 0.3485
 0.5060
 0.3637
 0.3774
 0.3248
 0.4520
 0.3936
 0.3403
 0.4660
 0.4114
 0.3643
 0.4196
 0.3903
 0.5128
 0.4221
 0.4115
 0.4240
 0.3610
 0.4999
 0.3672
 0.4721
 0.4252
 0.5590
 0.4694
 0.7322
 0.5849
 0.4749
 0.4426
 0.3934
 0.3909
 0.4576
 0.3636
 0.4146
 0.4129
 0.5081
 0.3681
 0.3652
 0.4254
 0.2945
 0.4142
 0.3145
 0.4304
 0.4252
 0.3493
 0.4257
 0.5133
 0.3261
 0.4367
 0.3637
 0.3712
 0.4183
 0.3772
 0.4418
 0.4231
 0.4133
 0.4731
 0.4955
 0.4046
 0.4079
 0.4719
 0.3875
 0.4673
 0.4129
 0.4569
 0.3530
 0.4793
 0.3844
 0.3785
 0.3343
 0.4351
 0.6512
 0.4295
 0.4122
 0.3788
 0.3692
 0.4343
 0.4214
 0.3873
 0.4566
 0.4456
 0.4107
 0.4596
 0.7082
 0.4452
 0.3515
 0.4785
 0.4217
 0.5756
 0.4312
 0.4047
 0.4043
 0.4764
 0.5489
 0.4430
 0.5559
 0.3744
 0.3951
 0.4376
 0.4752
 0.4340
 0.4399
 0.3586
 0.4161
 0.3930
 0.4599
 0.4354
 0.3448
 0.4649
 0.4442
 0.4275
 0.3881
 0.3247
 0.4909
 0.3426
 0.3989
 0.4320
 0.3363
 0.3991
 0.4732
 0.3514
 0.4736
 0.4244
 0.4603
 0.3298
 0.4357
 0.4353
 0.3742
 0.4191
 0.3880
 0.4212
 0.4527
 0.7213
 0.3969
 0.5217
 0.3786
 0.3512
 0.5318
 0.4138
 0.3243
 0.3244
 0.3652
 0.4774
 0.3997
 0.2800
 0.4562
 0.4463
 0.4816
 0.4290
 0.4399
 0.4633
 0.3575
 0.4774
 0.3105
 0.4356
 0.3797
 0.4304
 0.4261
 0.3740
 0.3370
 0.3917
 0.3637
 0.4347
 0.5235
 0.3845
[torch.FloatTensor of size 512]
), ('layer4.0.bn2.bias', 
-0.1759
-0.2156
-0.2047
-0.1695
-0.1628
-0.1473
-0.2158
-0.2905
-0.1112
-0.2196
-0.1020
-0.1549
-0.1989
-0.0445
-0.1508
-0.1920
-0.2114
-0.1655
-0.1854
-0.1733
-0.1289
-0.2376
-0.1965
-0.1965
-0.1776
-0.1774
-0.1760
-0.1546
-0.1648
-0.2599
-0.1752
-0.2498
-0.1741
-0.2410
-0.2498
-0.2938
-0.1496
-0.1578
-0.1800
-0.1851
-0.1516
-0.1345
-0.2746
-0.1248
-0.2246
-0.2531
-0.2398
-0.1859
-0.1739
-0.2393
-0.1214
-0.1803
-0.2729
-0.2617
-0.1855
-0.2316
-0.2333
-0.1860
-0.2097
-0.0692
-0.1912
-0.2078
-0.1084
-0.2810
-0.1303
-0.1654
-0.2119
-0.3641
-0.2951
-0.2384
-0.1632
-0.1892
-0.1792
-0.2031
-0.1770
-0.2738
-0.3324
-0.1725
-0.1793
-0.2638
-0.2207
-0.1609
-0.1534
-0.1414
-0.2992
-0.1450
-0.1838
-0.1779
-0.1422
-0.2198
-0.1900
-0.1580
-0.1666
-0.2490
-0.1569
-0.1718
-0.1660
-0.1972
-0.2287
-0.2366
-0.2230
-0.1543
-0.2030
-0.1431
-0.1363
-0.2015
-0.1804
-0.2093
-0.2964
-0.1984
-0.2683
-0.2216
-0.2147
-0.3404
-0.2668
-0.1890
-0.1733
-0.2226
-0.1772
-0.1698
-0.1095
-0.2180
-0.1154
-0.1654
-0.1910
-0.3535
-0.3112
-0.2161
-0.1496
-0.1667
-0.2849
-0.2207
-0.1529
-0.1807
-0.2118
-0.1869
-0.1376
-0.1770
-0.1861
-0.1969
-0.1741
-0.3011
-0.0787
-0.2017
-0.1947
-0.2247
-0.2459
-0.1058
-0.1401
-0.1213
-0.1199
-0.1760
-0.2156
-0.3307
-0.3515
-0.2366
-0.1185
-0.2155
-0.1751
-0.1892
-0.3365
-0.1598
-0.2554
 0.0644
-0.2856
-0.1198
-0.1583
-0.2297
-0.3352
-0.1987
-0.2686
-0.1632
-0.2461
-0.2900
-0.2428
-0.1449
-0.1900
-0.2149
-0.1541
-0.2917
-0.2504
-0.2213
-0.0463
-0.1547
-0.1511
-0.1527
-0.1735
-0.1931
-0.1987
-0.2239
-0.2086
-0.2688
-0.1845
-0.1797
-0.1833
-0.3880
-0.1539
-0.1553
-0.1567
-0.2238
-0.1511
-0.2540
-0.2849
-0.1826
-0.2687
-0.2328
-0.2108
-0.2410
-0.1022
-0.1507
-0.1978
-0.1734
-0.2282
-0.0985
-0.1847
-0.1770
-0.1576
-0.1937
-0.1643
-0.2822
-0.1866
-0.2754
-0.2266
-0.2169
-0.1352
-0.2194
-0.1060
-0.2139
-0.1322
-0.1889
-0.2130
-0.1913
-0.2364
-0.1402
-0.2228
-0.2354
-0.1632
-0.1905
-0.1428
-0.1177
-0.2419
-0.2733
-0.2963
-0.1600
-0.3558
-0.3673
-0.2201
-0.1505
-0.2084
-0.0870
-0.2052
-0.2070
-0.1986
-0.2299
-0.0745
-0.1765
-0.1412
-0.2180
-0.1450
-0.1426
-0.1452
-0.2916
-0.0871
-0.1359
-0.2003
-0.1125
-0.2588
-0.1988
-0.2028
-0.2443
-0.0864
-0.3415
-0.2579
-0.2343
-0.3552
-0.1859
-0.1153
-0.1732
-0.1780
-0.1909
-0.2018
-0.1886
-0.2751
-0.1501
 0.1165
-0.1891
-0.1845
-0.2037
-0.0339
-0.3464
-0.1956
-0.1962
-0.1537
-0.1902
-0.1431
-0.3022
-0.1780
-0.1971
-0.2118
-0.0952
-0.1711
-0.2409
-0.2184
-0.2114
-0.2042
-0.0566
-0.0700
-0.2081
-0.1872
-0.2079
-0.1540
-0.2266
-0.1981
-0.1679
-0.2022
-0.2010
-0.1051
-0.1705
-0.2139
 0.0396
-0.1077
-0.2745
-0.2690
-0.2603
-0.2819
-0.1917
-0.1940
-0.2944
-0.1822
-0.2903
-0.1064
-0.2076
-0.2648
-0.3032
-0.2878
-0.1579
-0.0071
-0.2142
-0.2022
-0.1516
-0.1123
 0.0246
-0.0978
-0.1382
-0.1800
-0.3214
-0.2179
-0.1369
-0.0800
 0.0117
-0.1839
-0.1926
-0.1614
-0.2769
-0.1909
-0.2101
-0.2305
-0.2055
-0.2017
-0.2741
-0.1005
-0.3152
-0.1121
-0.1700
-0.1364
-0.2157
-0.2673
-0.1584
-0.1997
-0.1745
-0.1886
-0.2307
-0.2024
-0.3376
-0.2266
-0.2355
-0.2133
-0.2346
-0.2412
-0.2358
-0.1265
-0.2341
-0.1887
-0.1646
-0.1417
-0.1882
-0.1076
-0.3048
-0.1162
-0.1651
-0.2046
-0.1833
-0.3102
-0.1778
-0.1575
-0.2676
-0.1777
-0.1569
-0.1741
-0.1892
-0.3028
-0.1457
-0.2179
-0.2226
-0.1609
-0.1423
-0.2683
-0.2920
-0.1740
-0.2079
-0.1940
-0.2679
-0.1973
-0.1951
-0.1665
-0.2286
-0.1903
-0.2667
-0.4010
-0.2550
-0.1817
-0.2025
-0.1589
-0.2476
-0.0573
-0.2203
-0.2084
-0.1587
-0.1212
-0.1795
-0.3449
-0.1662
-0.2523
-0.2435
-0.2878
-0.2797
-0.1897
-0.2113
-0.1943
-0.2050
-0.1694
-0.2243
-0.2987
-0.1328
-0.1428
-0.2399
-0.1593
-0.1999
-0.3225
-0.1860
-0.1763
-0.2691
-0.2097
-0.2396
-0.1140
-0.1897
-0.1870
-0.1829
-0.2615
-0.2073
-0.1858
-0.0598
-0.1915
-0.2183
-0.2088
-0.1742
-0.2715
-0.1999
-0.2117
-0.2492
-0.1717
-0.1566
-0.1669
-0.3015
-0.1685
-0.2434
-0.2297
-0.1947
-0.2860
-0.3288
-0.2197
-0.1862
-0.1755
-0.0987
-0.1756
-0.1304
-0.1555
-0.1679
-0.2222
-0.2819
-0.2652
-0.0947
-0.2412
-0.2731
-0.2572
-0.2604
-0.2934
-0.2470
-0.1820
-0.2740
-0.1336
-0.1698
-0.1919
-0.1796
-0.2325
-0.1352
-0.1077
-0.2184
-0.1539
-0.2015
-0.3243
-0.1713
[torch.FloatTensor of size 512]
), ('layer4.0.bn2.running_mean', 
-0.2323
-0.2009
-0.1230
-0.1102
-0.0945
-0.1073
-0.1357
-0.1954
-0.1826
-0.1890
-0.1432
-0.1667
-0.1086
-0.1213
-0.1614
-0.1109
-0.1794
-0.1853
-0.1421
-0.1549
-0.1322
-0.1870
-0.1730
-0.1042
-0.1547
-0.1679
-0.1846
-0.1568
-0.1340
-0.0786
-0.1664
-0.1481
-0.1538
-0.1475
-0.1476
-0.1409
-0.2402
-0.0707
-0.0515
-0.1052
-0.1535
-0.2514
-0.1963
-0.1318
-0.1389
-0.1726
-0.2069
-0.1794
-0.0709
-0.1851
-0.1337
-0.0983
-0.1463
-0.1685
-0.1355
-0.1603
-0.1008
-0.1787
-0.2180
-0.1460
-0.1948
-0.1348
-0.2020
-0.1971
-0.1880
-0.0911
-0.1778
-0.1945
-0.0790
-0.2138
-0.1080
-0.1863
-0.1487
-0.1820
-0.1090
-0.1556
-0.1834
-0.1325
-0.1903
-0.1287
-0.1414
-0.0978
-0.0961
-0.1062
-0.1628
-0.1549
-0.1931
-0.1080
-0.1673
 0.0160
-0.1061
-0.0820
-0.1730
-0.1498
-0.1451
-0.1533
-0.0621
-0.1445
-0.0918
-0.1844
-0.2001
-0.1960
-0.2816
-0.1050
-0.0827
-0.0967
-0.1907
-0.2045
-0.1425
-0.1722
-0.1856
-0.1481
-0.0500
-0.1964
-0.2529
-0.1305
-0.1833
-0.1010
-0.1678
-0.0904
-0.1421
-0.1829
-0.1483
-0.1604
-0.2044
-0.2470
-0.2574
 0.0411
-0.1046
-0.0987
-0.1557
-0.1563
-0.1190
-0.0537
-0.1004
-0.1289
-0.1472
-0.1177
-0.1001
-0.1697
-0.1182
-0.1078
-0.0982
-0.0848
-0.1159
-0.2130
-0.1836
-0.1310
-0.1298
-0.1068
-0.1665
-0.1800
-0.1908
-0.1894
-0.1793
-0.1248
-0.1584
-0.0122
-0.1105
-0.0558
-0.1281
-0.0900
-0.1077
-0.0362
-0.1808
-0.1684
-0.1897
-0.1344
-0.1439
-0.1051
-0.1875
-0.1760
-0.0602
-0.1801
-0.1497
-0.0929
-0.1682
-0.1124
-0.2335
-0.1392
-0.1584
-0.1489
-0.0831
-0.1165
-0.1117
-0.1485
-0.2255
-0.0950
-0.3208
-0.1579
-0.2568
-0.0963
-0.1540
-0.0998
-0.1362
-0.2135
-0.2037
-0.1357
-0.1213
-0.1102
-0.1944
-0.1846
-0.1457
-0.1200
-0.1515
-0.1240
-0.1507
-0.1459
-0.1838
-0.0138
-0.1594
-0.1894
-0.1916
-0.0972
-0.1900
-0.0623
-0.1021
-0.0999
-0.2354
-0.2060
-0.1587
-0.0965
-0.0440
-0.1450
-0.2433
-0.1366
-0.1435
-0.1234
-0.0996
-0.1855
-0.1259
-0.1713
-0.2071
 0.3675
-0.1830
-0.0825
-0.1592
 0.4767
-0.1776
-0.2842
-0.1735
-0.2587
-0.0918
-0.0702
-0.1917
-0.2316
-0.1425
-0.2009
-0.1625
-0.0506
-0.1747
-0.1638
-0.0841
-0.0549
-0.1516
-0.2360
-0.1172
-0.1092
-0.0038
-0.1679
-0.1220
-0.0646
-0.1783
-0.1515
-0.0512
-0.0918
-0.0816
-0.1421
-0.1359
 0.0083
-0.2484
-0.1884
-0.0736
-0.1139
-0.2213
-0.1780
-0.1929
-0.1703
-0.1334
-0.2096
-0.1853
-0.1166
-0.1438
-0.1881
 0.1436
-0.0686
-0.1421
-0.1335
-0.1524
-0.2322
-0.2406
-0.0871
-0.1397
-0.1480
-0.1512
-0.1262
-0.1244
-0.1173
-0.1291
-0.1326
-0.1113
-0.2080
-0.1329
-0.1498
-0.1469
-0.1715
-0.1090
-0.1383
-0.0470
-0.1454
-0.1737
-0.2443
-0.1302
-0.0830
-0.1078
-0.1338
-0.1451
-0.1278
-0.1947
-0.0877
-0.1288
-0.1151
-0.1809
-0.1068
-0.1797
-0.1599
-0.1411
-0.2104
-0.1189
-0.1548
-0.1769
-0.2152
-0.2549
-0.1977
-0.1385
-0.2339
-0.2481
-0.0978
-0.0979
-0.0697
-0.1257
-0.0927
-0.1224
-0.1986
-0.1570
-0.1845
-0.1944
-0.1407
-0.1315
-0.1657
-0.1823
-0.1973
-0.1310
-0.1542
-0.1280
-0.0570
-0.1538
-0.1152
-0.1496
-0.0477
-0.1515
-0.1121
-0.1667
-0.1651
-0.0415
-0.1299
-0.1688
-0.1143
-0.0564
-0.0792
-0.2140
-0.1535
-0.3087
-0.1927
-0.1168
-0.1704
-0.1362
-0.1538
-0.0804
-0.1526
-0.1125
-0.1438
-0.0565
-0.0919
-0.1430
-0.1173
-0.2215
-0.1624
-0.2277
-0.1165
-0.1816
-0.0899
-0.0536
-0.1443
-0.1539
-0.1223
-0.1396
-0.1891
-0.1502
-0.1522
-0.1075
-0.0810
-0.1276
-0.2212
-0.0747
-0.1313
-0.1488
-0.1832
-0.1005
-0.1688
-0.2087
-0.2055
-0.0563
-0.1815
-0.0792
-0.1381
-0.0926
-0.1136
-0.2200
-0.1026
-0.1947
-0.0892
-0.1711
-0.0661
-0.1989
-0.1249
-0.1797
-0.2079
-0.1755
-0.0912
-0.3122
-0.1278
-0.1374
-0.2122
-0.1040
-0.1104
-0.2023
-0.1358
-0.1437
-0.1378
-0.1535
-0.1709
-0.2460
-0.1195
-0.1224
-0.1485
-0.2050
-0.1663
-0.1218
-0.1084
-0.0843
-0.1545
-0.1624
-0.0402
-0.0948
-0.1233
-0.1247
-0.0949
-0.1890
-0.1409
-0.1957
-0.1521
-0.1791
-0.1771
-0.0799
-0.1515
-0.2390
-0.0979
-0.1374
-0.1728
-0.0893
-0.2172
-0.1527
-0.1728
-0.1136
-0.1325
-0.2203
-0.1285
-0.1800
-0.2360
-0.1478
-0.0860
-0.1360
-0.1366
-0.1958
-0.1150
-0.1826
-0.2315
-0.1288
-0.2192
-0.0944
-0.1645
-0.1989
-0.1677
-0.1951
-0.1835
-0.0518
-0.0916
-0.1564
-0.1527
-0.1834
-0.1424
-0.0484
-0.0799
-0.0930
-0.0937
-0.1105
-0.1594
-0.1454
-0.2459
-0.0755
-0.2106
[torch.FloatTensor of size 512]
), ('layer4.0.bn2.running_var', 
1.00000e-02 *
  2.4833
  3.3080
  2.0296
  1.5249
  2.0692
  1.8305
  2.0471
  2.8226
  3.0079
  2.4272
  2.7239
  2.1119
  1.6120
  4.8926
  1.5775
  1.9033
  2.0561
  3.5445
  2.2633
  1.4559
  2.1948
  2.6594
  2.5071
  1.5912
  1.9282
  2.1082
  1.9509
  1.9900
  1.6651
  1.8938
  2.1580
  2.5958
  2.0472
  2.1154
  1.6775
  1.4313
  2.8038
  2.0398
  2.3671
  1.3760
  1.9427
  2.1632
  2.3166
  1.3648
  2.5834
  2.0891
  1.9066
  3.4593
  2.1960
  2.2518
  2.0690
  1.3641
  1.6057
  1.9966
  2.0539
  1.7946
  1.7566
  1.9128
  2.2047
  2.9701
  1.7670
  1.9960
  2.9041
  2.3745
  2.3840
  2.0386
  2.5736
  1.7321
  1.6626
  1.8936
  3.6740
  2.3555
  1.7346
  2.9061
  1.7480
  2.0982
  1.6436
  1.7391
  2.2283
  1.9045
  1.5922
  2.6576
  1.8965
  2.4633
  2.2448
  2.3271
  2.6828
  1.5013
  3.4970
  2.7197
  2.4104
  2.4977
  1.8593
  1.8319
  2.3605
  2.9364
  2.0061
  2.1858
  2.2766
  2.0778
  3.7099
  2.7477
  2.4862
  1.7150
  1.6191
  1.5232
  3.0046
  2.6621
  1.8450
  2.9335
  1.7999
  2.5333
  1.8225
  2.6072
  2.3344
  1.9952
  2.7224
  3.9102
  1.7148
  1.8970
  2.6572
  2.3887
  2.5440
  1.9029
  1.8488
  1.9150
  2.2768
  2.1362
  1.5905
  2.0834
  2.0401
  2.5575
  2.2002
  1.2720
  1.5156
  1.7273
  2.4564
  2.0573
  1.9230
  1.7903
  2.1950
  1.9275
  1.9678
  2.0337
  2.0774
  2.3042
  2.2799
  1.7380
  2.5705
  2.0541
  3.0618
  2.0408
  1.8540
  2.5696
  1.4412
  2.2202
  1.8074
  3.2491
  2.3889
  1.7946
  1.9074
  2.2918
  1.8890
  2.9527
  2.1006
  2.5455
  2.3745
  2.0723
  2.0327
  2.0734
  2.0228
  1.9176
  1.7930
  2.2085
  1.7270
  2.3272
  2.2734
  1.8007
  3.7277
  2.0109
  2.5690
  2.3128
  2.7003
  2.4481
  2.0348
  2.9298
  1.9656
  2.0298
  3.2104
  1.7097
  2.0729
  1.6681
  2.9341
  1.3314
  2.2363
  1.5633
  1.8116
  3.0468
  2.0086
  2.1300
  2.8081
  1.7087
  3.4536
  2.1716
  2.4298
  1.6968
  2.1991
  1.4881
  1.9965
  1.6619
  2.4966
  2.3971
  1.9127
  2.3055
  2.0037
  2.4586
  2.4219
  1.9185
  2.3733
  2.4952
  2.1067
  1.6952
  2.2617
  1.6901
  2.5003
  1.8883
  1.9898
  2.0216
  2.0317
  2.4188
  1.9648
  1.8298
  1.8622
  6.7734
  1.8365
  1.4915
  2.3664
  8.2619
  2.5052
  4.0331
  1.8407
  3.2252
  3.3313
  1.6555
  2.0685
  2.6944
  1.5494
  1.8364
  1.8372
  3.4329
  3.8219
  1.6332
  1.5061
  1.5214
  2.0056
  3.3673
  2.1137
  2.7841
  1.9850
  2.1473
  2.3712
  2.5655
  2.2647
  1.6206
  1.6700
  2.4116
  1.6932
  2.5522
  1.6277
  2.9663
  3.7830
  1.8506
  1.7631
  2.8417
  2.9806
  2.1214
  2.1561
  2.1888
  2.1089
  2.4743
  2.3409
  1.9061
  1.7674
  2.7206
  3.4606
  1.6863
  1.8932
  2.4011
  2.2686
  1.7131
  2.2803
  1.7171
  1.9732
  1.7178
  1.9143
  1.4510
  3.2377
  2.2500
  1.8290
  2.1394
  3.0828
  2.1373
  2.0031
  2.3608
  2.8301
  1.8092
  2.3573
  1.9300
  1.8900
  1.9180
  2.2582
  3.1516
  2.6300
  1.6959
  2.0105
  1.9393
  4.1140
  1.5049
  3.3769
  5.2802
  2.8814
  1.9997
  2.0849
  2.0606
  2.1785
  1.3761
  2.1078
  1.5782
  1.8571
  2.5762
  3.7403
  3.2722
  2.1694
  1.7374
  1.8202
  1.9531
  5.2114
  1.5209
  1.8567
  2.2269
  2.0769
  6.5523
  1.6649
  3.6942
  2.0398
  1.6697
  2.2643
  2.3169
  2.5668
  4.6674
  1.8211
  2.1373
  2.0317
  1.8884
  1.8498
  1.6197
  2.4375
  1.6976
  1.8281
  1.4417
  2.8025
  2.0342
  2.6802
  1.8525
  2.3066
  1.5621
  2.3369
  2.0752
  2.5609
  1.8787
  3.0633
  2.4343
  9.0075
  2.2312
  2.1592
  1.6924
  2.0200
  1.7122
  2.2771
  1.5618
  2.9398
  1.9049
  2.7112
  1.7003
  1.6870
  2.1307
  1.6659
  1.5115
  2.2211
  2.0252
  1.8544
  1.4517
  1.3800
  2.9232
  1.6665
  1.9171
  1.6493
  1.9881
  2.0807
  2.0759
  1.2931
  2.0713
  1.7423
  3.0200
  2.7102
  2.5999
  1.5614
  1.8196
  2.0943
  2.1923
  2.4057
  1.8049
  1.5076
  2.5803
  1.8316
  1.8238
  1.6072
  1.8363
  2.8800
  1.6225
  2.2379
  1.9086
  2.0058
  1.5964
  3.0622
  1.8056
  2.0481
  2.6230
  2.5718
  2.4484
  4.8848
  2.0584
  1.7286
  2.3303
  2.0452
  2.5861
  2.1619
  1.7750
  1.7517
  2.2799
  3.7831
  1.9328
  3.0274
  1.8237
  1.9539
  1.9688
  2.8542
  2.1648
  1.7796
  1.4165
  2.0635
  1.5512
  2.4537
  1.8025
  1.7956
  2.1426
  2.3666
  2.5232
  1.7208
  1.4933
  2.9103
  2.3218
  1.7705
  2.0426
  1.5930
  2.3843
  2.4137
  1.5038
  2.4345
  1.9328
  2.5741
  1.9144
  2.4423
  1.5700
  2.3361
  1.8594
  1.7644
  2.2995
  1.8335
  3.9936
  1.6851
  3.1330
  1.8009
  2.0876
  2.8069
  2.4640
  1.9396
  1.5216
  1.3678
  2.1538
  1.5096
  1.6284
  1.9524
  1.8641
  2.0955
  2.0575
  1.4833
  1.9324
  1.9538
  1.8318
  1.9908
  2.0339
  2.1765
  2.2689
  2.0712
  2.3893
  1.8392
  1.7216
  1.7257
  2.6570
  1.5864
  1.7469
[torch.FloatTensor of size 512]
), ('layer4.0.downsample.0.weight', 
( 0 , 0 ,.,.) = 
  5.6973e-03

( 0 , 1 ,.,.) = 
  2.0359e-03

( 0 , 2 ,.,.) = 
  1.6696e-02
    ... 

( 0 ,253,.,.) = 
  8.4662e-03

( 0 ,254,.,.) = 
 -2.7450e-02

( 0 ,255,.,.) = 
  9.6710e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -2.7123e-02

( 1 , 1 ,.,.) = 
 -1.5713e-02

( 1 , 2 ,.,.) = 
  5.4291e-02
    ... 

( 1 ,253,.,.) = 
 -2.0631e-02

( 1 ,254,.,.) = 
 -3.0793e-02

( 1 ,255,.,.) = 
  1.3228e-03
      ⋮  

( 2 , 0 ,.,.) = 
 -5.2315e-02

( 2 , 1 ,.,.) = 
 -3.5294e-02

( 2 , 2 ,.,.) = 
  3.9423e-02
    ... 

( 2 ,253,.,.) = 
 -3.8161e-02

( 2 ,254,.,.) = 
 -2.6385e-02

( 2 ,255,.,.) = 
 -4.4272e-02
...     
      ⋮  

(509, 0 ,.,.) = 
  4.9361e-02

(509, 1 ,.,.) = 
  4.3553e-02

(509, 2 ,.,.) = 
  1.0309e-02
    ... 

(509,253,.,.) = 
  7.1570e-03

(509,254,.,.) = 
  1.4031e-03

(509,255,.,.) = 
 -6.6892e-02
      ⋮  

(510, 0 ,.,.) = 
  5.3341e-02

(510, 1 ,.,.) = 
 -1.4842e-02

(510, 2 ,.,.) = 
 -4.8024e-02
    ... 

(510,253,.,.) = 
  5.4730e-03

(510,254,.,.) = 
  4.2852e-02

(510,255,.,.) = 
  1.2923e-02
      ⋮  

(511, 0 ,.,.) = 
  3.0030e-02

(511, 1 ,.,.) = 
 -9.1642e-03

(511, 2 ,.,.) = 
  9.0266e-03
    ... 

(511,253,.,.) = 
  1.0095e-02

(511,254,.,.) = 
 -1.1120e-02

(511,255,.,.) = 
 -7.9560e-03
[torch.FloatTensor of size 512x256x1x1]
), ('layer4.0.downsample.1.weight', 
 0.1694
 0.3368
 0.2993
 0.3745
 0.1513
 0.1781
 0.3167
 0.3947
 0.1858
 0.2068
 0.1090
 0.2042
 0.2955
 0.0765
 0.2023
 0.2487
 0.3295
 0.3349
 0.2532
 0.2739
 0.1661
 0.3432
 0.3424
 0.2969
 0.2226
 0.0993
 0.3328
 0.2349
 0.2894
 0.2296
 0.2719
 0.3945
 0.1990
 0.2564
 0.2557
 0.3541
 0.1848
 0.2513
 0.3101
 0.2782
 0.2109
 0.2441
 0.3282
 0.3248
 0.2499
 0.1873
 0.2643
 0.3949
 0.1962
 0.2587
 0.1708
 0.3381
 0.2238
 0.2498
 0.2787
 0.3783
 0.3445
 0.2681
 0.2956
 0.1146
 0.2688
 0.3479
 0.1295
 0.2843
 0.1552
 0.3026
 0.2738
 0.1891
 0.3568
 0.2302
 0.2199
 0.2070
 0.2119
 0.0971
 0.2482
 0.2264
 0.3555
 0.3113
 0.2386
 0.2654
 0.2975
 0.2666
 0.2180
 0.1451
 0.2460
 0.1734
 0.2358
 0.2891
 0.2091
 0.1971
 0.2185
 0.2008
 0.2461
 0.3726
 0.2028
 0.1993
 0.3652
 0.2258
 0.2606
 0.1900
 0.2764
 0.2011
 0.1973
 0.2958
 0.3222
 0.4117
 0.1475
 0.2674
 0.1928
 0.3615
 0.2774
 0.2143
 0.2688
 0.4286
 0.2560
 0.2777
 0.1339
 0.5103
 0.3238
 0.2417
 0.1529
 0.1843
 0.0579
 0.2288
 0.1797
 0.2803
 0.2279
 0.1579
 0.3196
 0.1842
 0.3378
 0.1688
 0.1654
 0.3049
 0.3533
 0.2948
 0.1140
 0.2503
 0.1892
 0.2647
 0.2405
 0.3880
 0.1933
 0.1918
 0.2511
 0.2901
 0.3151
 0.3252
 0.1296
 0.2491
 0.1417
 0.1295
 0.3062
 0.2836
 0.3483
 0.2306
 0.2741
 0.2700
 0.1873
 0.2431
 0.3526
 0.3546
 0.2721
 0.2708
 0.3065
 0.0832
 0.2968
 0.2286
 0.3276
 0.2695
 0.2452
 0.2444
 0.2857
 0.3365
 0.2784
 0.2933
 0.3397
 0.2231
 0.2330
 0.1486
 0.3846
 0.3104
 0.1724
 0.1724
 0.3466
 0.2978
 0.2582
 0.1879
 0.2419
 0.2249
 0.2720
 0.3735
 0.4259
 0.3754
 0.1731
 0.3698
 0.2349
 0.2694
 0.3148
 0.1658
 0.1181
 0.2994
 0.4018
 0.2126
 0.3864
 0.2955
 0.1848
 0.3686
 0.1972
 0.3265
 0.2319
 0.1676
 0.1756
 0.2367
 0.2139
 0.1974
 0.2561
 0.2619
 0.2170
 0.2284
 0.3486
 0.4500
 0.2563
 0.2559
 0.2814
 0.1797
 0.1736
 0.2013
 0.3411
 0.2245
 0.1385
 0.2284
 0.2230
 0.2566
 0.2301
 0.3639
 0.1380
 0.2381
 0.2590
 0.0830
 0.1863
 0.1267
 0.4501
 0.2741
 0.2590
 0.2782
 0.2248
 0.2718
 0.1949
 0.1815
 0.2969
 0.3168
 0.3389
 0.2790
 0.1594
 0.2752
 0.2947
 0.2909
 0.1418
 0.3336
 0.1953
 0.2646
 0.0879
 0.2553
 0.3335
 0.1943
 0.2777
 0.2386
 0.3676
 0.3042
 0.1234
 0.2615
 0.2548
 0.3224
 0.3462
 0.2090
 0.2142
 0.2054
 0.2115
 0.2153
 0.2163
 0.2509
 0.2429
 0.3326
-0.0527
 0.2244
 0.2319
 0.2674
 0.1103
 0.2320
 0.2822
 0.3234
 0.2818
 0.2093
 0.2261
 0.2900
 0.3127
 0.3456
 0.2592
 0.1677
 0.3924
 0.2694
 0.1997
 0.2973
 0.3324
 0.2270
 0.0656
 0.2964
 0.1948
 0.2383
 0.3021
 0.2510
 0.3117
 0.3185
 0.1721
 0.1867
 0.1665
 0.2851
 0.3512
-0.0486
 0.1558
 0.2213
 0.3281
 0.3861
 0.2375
 0.3057
 0.1178
 0.2681
 0.1921
 0.2211
 0.1679
 0.2877
 0.2495
 0.2451
 0.2678
 0.2393
 0.0988
 0.2778
 0.2465
 0.1747
 0.1005
 0.0502
 0.2809
 0.2810
 0.1716
 0.2114
 0.2213
 0.2817
 0.1506
 0.0769
 0.2381
 0.2411
 0.2942
 0.2543
 0.2556
 0.3451
 0.2948
 0.3040
 0.3204
 0.2757
 0.1657
 0.2941
 0.1301
 0.1854
 0.2866
 0.3198
 0.2127
 0.3608
 0.3440
 0.0954
 0.2586
 0.1709
 0.2007
 0.1967
 0.1972
 0.1942
 0.3201
 0.3484
 0.3437
 0.3153
 0.2020
 0.3251
 0.3227
 0.3038
 0.2634
 0.2364
 0.2492
 0.3080
 0.2591
 0.2391
 0.2720
 0.2601
 0.3210
 0.1818
 0.3526
 0.3579
 0.2861
 0.2526
 0.1642
 0.2897
 0.3996
 0.2651
 0.2031
 0.2502
 0.3694
 0.2085
 0.2804
 0.2233
 0.2309
 0.1609
 0.2369
 0.2116
 0.3549
 0.1635
 0.1642
 0.3072
 0.3077
 0.2152
 0.2821
 0.2857
 0.1701
 0.2305
 0.2134
 0.3189
 0.1061
 0.2628
 0.2608
 0.1749
 0.0820
 0.1815
 0.3566
 0.1204
 0.3159
 0.1595
 0.3790
 0.3272
 0.2086
 0.3096
 0.2253
 0.1456
 0.1346
 0.2304
 0.2913
 0.2727
 0.2027
 0.2688
 0.1958
 0.2277
 0.3036
 0.3250
 0.3000
 0.3328
 0.2417
 0.2665
 0.2473
 0.0913
 0.2503
 0.2543
 0.3710
 0.3321
 0.3693
 0.1099
 0.1701
 0.1758
 0.3888
 0.2206
 0.2766
 0.2813
 0.1755
 0.2616
 0.1544
 0.2519
 0.1945
 0.2452
 0.3405
 0.2446
 0.2426
 0.1822
 0.3002
 0.3037
 0.3118
 0.2414
 0.2326
 0.1303
 0.3081
 0.0979
 0.2776
 0.2918
 0.3848
 0.1789
 0.3622
 0.3005
 0.1923
 0.2672
 0.1663
 0.2998
 0.2710
 0.2040
 0.2565
 0.2289
 0.2552
 0.2121
 0.3532
 0.2293
 0.2510
 0.3085
 0.2368
 0.3000
 0.2111
 0.3456
 0.3422
 0.1576
[torch.FloatTensor of size 512]
), ('layer4.0.downsample.1.bias', 
-0.1759
-0.2156
-0.2047
-0.1695
-0.1628
-0.1473
-0.2158
-0.2905
-0.1112
-0.2196
-0.1020
-0.1549
-0.1989
-0.0445
-0.1508
-0.1920
-0.2114
-0.1655
-0.1854
-0.1733
-0.1289
-0.2376
-0.1965
-0.1965
-0.1776
-0.1774
-0.1760
-0.1546
-0.1648
-0.2599
-0.1752
-0.2498
-0.1741
-0.2410
-0.2498
-0.2938
-0.1496
-0.1578
-0.1800
-0.1851
-0.1516
-0.1345
-0.2746
-0.1248
-0.2246
-0.2531
-0.2398
-0.1859
-0.1739
-0.2393
-0.1214
-0.1803
-0.2729
-0.2617
-0.1855
-0.2316
-0.2333
-0.1860
-0.2097
-0.0692
-0.1912
-0.2078
-0.1084
-0.2810
-0.1303
-0.1654
-0.2119
-0.3641
-0.2951
-0.2384
-0.1632
-0.1892
-0.1792
-0.2031
-0.1770
-0.2738
-0.3324
-0.1725
-0.1793
-0.2638
-0.2207
-0.1609
-0.1534
-0.1414
-0.2992
-0.1450
-0.1838
-0.1779
-0.1422
-0.2198
-0.1900
-0.1580
-0.1666
-0.2490
-0.1569
-0.1718
-0.1660
-0.1972
-0.2287
-0.2366
-0.2230
-0.1543
-0.2030
-0.1431
-0.1363
-0.2015
-0.1804
-0.2093
-0.2964
-0.1984
-0.2683
-0.2216
-0.2147
-0.3404
-0.2668
-0.1890
-0.1733
-0.2226
-0.1772
-0.1698
-0.1095
-0.2180
-0.1154
-0.1654
-0.1910
-0.3535
-0.3112
-0.2161
-0.1496
-0.1667
-0.2849
-0.2207
-0.1529
-0.1807
-0.2118
-0.1869
-0.1376
-0.1770
-0.1861
-0.1969
-0.1741
-0.3011
-0.0787
-0.2017
-0.1947
-0.2247
-0.2459
-0.1058
-0.1401
-0.1213
-0.1199
-0.1760
-0.2156
-0.3307
-0.3515
-0.2366
-0.1185
-0.2155
-0.1751
-0.1892
-0.3365
-0.1598
-0.2554
 0.0644
-0.2856
-0.1198
-0.1583
-0.2297
-0.3352
-0.1987
-0.2686
-0.1632
-0.2461
-0.2900
-0.2428
-0.1449
-0.1900
-0.2149
-0.1541
-0.2917
-0.2504
-0.2213
-0.0463
-0.1547
-0.1511
-0.1527
-0.1735
-0.1931
-0.1987
-0.2239
-0.2086
-0.2688
-0.1845
-0.1797
-0.1833
-0.3880
-0.1539
-0.1553
-0.1567
-0.2238
-0.1511
-0.2540
-0.2849
-0.1826
-0.2687
-0.2328
-0.2108
-0.2410
-0.1022
-0.1507
-0.1978
-0.1734
-0.2282
-0.0985
-0.1847
-0.1770
-0.1576
-0.1937
-0.1643
-0.2822
-0.1866
-0.2754
-0.2266
-0.2169
-0.1352
-0.2194
-0.1060
-0.2139
-0.1322
-0.1889
-0.2130
-0.1913
-0.2364
-0.1402
-0.2228
-0.2354
-0.1632
-0.1905
-0.1428
-0.1177
-0.2419
-0.2733
-0.2963
-0.1600
-0.3558
-0.3673
-0.2201
-0.1505
-0.2084
-0.0870
-0.2052
-0.2070
-0.1986
-0.2299
-0.0745
-0.1765
-0.1412
-0.2180
-0.1450
-0.1426
-0.1452
-0.2916
-0.0871
-0.1359
-0.2003
-0.1125
-0.2588
-0.1988
-0.2028
-0.2443
-0.0864
-0.3415
-0.2579
-0.2343
-0.3552
-0.1859
-0.1153
-0.1732
-0.1780
-0.1909
-0.2018
-0.1886
-0.2751
-0.1501
 0.1165
-0.1891
-0.1845
-0.2037
-0.0339
-0.3464
-0.1956
-0.1962
-0.1537
-0.1902
-0.1431
-0.3022
-0.1780
-0.1971
-0.2118
-0.0952
-0.1711
-0.2409
-0.2184
-0.2114
-0.2042
-0.0566
-0.0700
-0.2081
-0.1872
-0.2079
-0.1540
-0.2266
-0.1981
-0.1679
-0.2022
-0.2010
-0.1051
-0.1705
-0.2139
 0.0396
-0.1077
-0.2745
-0.2690
-0.2603
-0.2819
-0.1917
-0.1940
-0.2944
-0.1822
-0.2903
-0.1064
-0.2076
-0.2648
-0.3032
-0.2878
-0.1579
-0.0071
-0.2142
-0.2022
-0.1516
-0.1123
 0.0246
-0.0978
-0.1382
-0.1800
-0.3214
-0.2179
-0.1369
-0.0800
 0.0117
-0.1839
-0.1926
-0.1614
-0.2769
-0.1909
-0.2101
-0.2305
-0.2055
-0.2017
-0.2741
-0.1005
-0.3152
-0.1121
-0.1700
-0.1364
-0.2157
-0.2673
-0.1584
-0.1997
-0.1745
-0.1886
-0.2307
-0.2024
-0.3376
-0.2266
-0.2355
-0.2133
-0.2346
-0.2412
-0.2358
-0.1265
-0.2341
-0.1887
-0.1646
-0.1417
-0.1882
-0.1076
-0.3048
-0.1162
-0.1651
-0.2046
-0.1833
-0.3102
-0.1778
-0.1575
-0.2676
-0.1777
-0.1569
-0.1741
-0.1892
-0.3028
-0.1457
-0.2179
-0.2226
-0.1609
-0.1423
-0.2683
-0.2920
-0.1740
-0.2079
-0.1940
-0.2679
-0.1973
-0.1951
-0.1665
-0.2286
-0.1903
-0.2667
-0.4010
-0.2550
-0.1817
-0.2025
-0.1589
-0.2476
-0.0573
-0.2203
-0.2084
-0.1587
-0.1212
-0.1795
-0.3449
-0.1662
-0.2523
-0.2435
-0.2878
-0.2797
-0.1897
-0.2113
-0.1943
-0.2050
-0.1694
-0.2243
-0.2987
-0.1328
-0.1428
-0.2399
-0.1593
-0.1999
-0.3225
-0.1860
-0.1763
-0.2691
-0.2097
-0.2396
-0.1140
-0.1897
-0.1870
-0.1829
-0.2615
-0.2073
-0.1858
-0.0598
-0.1915
-0.2183
-0.2088
-0.1742
-0.2715
-0.1999
-0.2117
-0.2492
-0.1717
-0.1566
-0.1669
-0.3015
-0.1685
-0.2434
-0.2297
-0.1947
-0.2860
-0.3288
-0.2197
-0.1862
-0.1755
-0.0987
-0.1756
-0.1304
-0.1555
-0.1679
-0.2222
-0.2819
-0.2652
-0.0947
-0.2412
-0.2731
-0.2572
-0.2604
-0.2934
-0.2470
-0.1820
-0.2740
-0.1336
-0.1698
-0.1919
-0.1796
-0.2325
-0.1352
-0.1077
-0.2184
-0.1539
-0.2015
-0.3243
-0.1713
[torch.FloatTensor of size 512]
), ('layer4.0.downsample.1.running_mean', 
-0.1023
-0.1302
 0.0169
 0.0539
 0.0531
-0.0650
-0.1681
-0.0962
 0.0601
-0.0898
-0.0760
-0.0120
 0.0480
-0.0867
-0.0415
-0.0887
-0.0378
-0.2376
-0.0965
-0.0434
 0.0303
-0.2381
-0.0065
-0.0700
 0.0606
 0.0257
-0.1691
-0.1207
-0.1550
-0.0927
-0.0012
-0.0962
-0.0922
-0.1789
 0.0146
-0.0498
 0.0276
-0.1692
 0.0259
 0.0377
-0.0292
 0.0140
-0.0638
-0.0831
 0.1049
-0.0554
-0.0551
 0.1332
 0.0775
-0.1861
-0.0812
-0.2083
-0.0244
-0.0297
-0.0593
 0.1243
-0.0475
-0.0014
-0.0069
-0.1002
-0.1040
-0.0837
 0.0009
 0.0259
-0.0490
-0.0631
 0.0193
-0.0375
-0.0487
-0.0803
-0.1123
-0.1538
-0.1031
-0.0858
-0.0706
-0.0725
-0.0903
 0.0075
-0.0850
-0.0287
 0.0008
 0.0249
-0.1068
-0.1237
-0.1271
 0.0930
-0.0295
-0.0846
-0.0562
-0.1210
 0.0103
-0.1118
-0.0407
-0.0110
-0.0512
-0.1326
 0.0454
-0.1072
-0.1018
-0.1699
-0.0338
-0.0950
-0.1897
 0.0623
-0.0210
 0.0932
-0.0986
 0.0823
-0.0911
 0.0711
-0.1106
 0.0176
-0.0164
-0.2472
-0.1185
-0.0477
-0.0651
 0.1771
 0.0150
-0.0449
-0.1536
 0.0856
 0.0214
-0.0775
-0.0115
-0.0189
 0.0531
-0.0859
-0.0380
 0.0722
-0.0279
 0.0244
-0.0680
-0.0434
-0.0344
-0.1618
-0.0222
-0.0492
 0.0432
-0.1546
-0.1090
-0.1352
-0.1276
 0.0435
 0.0177
-0.0656
-0.0611
 0.2025
-0.0140
-0.1246
 0.0086
-0.0182
 0.0312
-0.1482
-0.1866
-0.0051
-0.0816
-0.1819
-0.0977
-0.0378
 0.0002
-0.0387
-0.0635
 0.1461
-0.1282
-0.0743
 0.0310
-0.1228
-0.0425
 0.0254
-0.0923
 0.0005
-0.0166
-0.1357
-0.0625
 0.0060
 0.0374
-0.0008
-0.1331
-0.0414
-0.2023
-0.0162
-0.1962
-0.0725
 0.0208
-0.0585
-0.1135
-0.1361
-0.1067
-0.1719
 0.0145
-0.0390
 0.0426
-0.1199
 0.0811
-0.0991
-0.1779
-0.0845
 0.0010
-0.0083
 0.0078
-0.0986
-0.0941
 0.0696
-0.1100
-0.1146
 0.0178
-0.1711
-0.0144
-0.0282
 0.0487
-0.0513
-0.0963
 0.0386
-0.1037
 0.0128
-0.0490
-0.0292
-0.0553
-0.1402
 0.0022
-0.0791
-0.0174
 0.0108
-0.0066
 0.0250
 0.0028
-0.0150
-0.1172
 0.0335
 0.0034
-0.1005
-0.1735
-0.1138
-0.0804
-0.0329
-0.0286
-0.2133
-0.0151
-0.0876
 0.0146
-0.0277
-0.1421
 0.0272
 0.0350
-0.1483
-0.1306
-0.0596
-0.1365
-0.1003
-0.0083
-0.0906
-0.1012
-0.1426
 0.0432
-0.0785
-0.0461
 0.0157
 0.0150
-0.1290
 0.0685
-0.1478
-0.1259
-0.0573
 0.0999
-0.0234
-0.1340
 0.0173
 0.1673
 0.0693
 0.0070
 0.0203
-0.0508
-0.1397
-0.1292
-0.0331
 0.0088
 0.1208
-0.1808
-0.0149
-0.1302
 0.0323
-0.0986
-0.0620
 0.0781
 0.0809
-0.0918
-0.0450
-0.1246
-0.0485
-0.0756
 0.0692
-0.0382
-0.0063
-0.0477
-0.0603
-0.0485
-0.0355
-0.1025
-0.0634
 0.1515
-0.1320
-0.0714
 0.0402
-0.0342
-0.0085
 0.0019
-0.0293
-0.1523
-0.0337
-0.0482
-0.0976
-0.0404
-0.0919
-0.0003
 0.0222
-0.0552
-0.0686
 0.0319
 0.1502
-0.1174
-0.1299
 0.0183
-0.0151
-0.1464
-0.0842
-0.0300
-0.0734
-0.0539
-0.1281
 0.0408
-0.0897
-0.1408
 0.0572
 0.0280
-0.0091
-0.1038
-0.0243
-0.0847
-0.0224
-0.0027
-0.1154
-0.0466
 0.0305
-0.1060
-0.0092
-0.0748
 0.0004
-0.0888
-0.1423
-0.0397
-0.1643
-0.0451
 0.0331
 0.0008
-0.1542
 0.0999
-0.0046
-0.0571
-0.0843
 0.0550
-0.1814
-0.1387
-0.0335
 0.0472
-0.0325
-0.0034
-0.0210
 0.0393
 0.0093
-0.0188
-0.0973
 0.5186
 0.0181
-0.0405
-0.0579
-0.0143
-0.0268
-0.0422
 0.0041
-0.0778
-0.0486
 0.0359
-0.1563
-0.0826
-0.1485
-0.0987
-0.0028
-0.0243
-0.0655
 0.0076
-0.1397
-0.1042
-0.0823
-0.0552
 0.0079
-0.0470
 0.0660
-0.1063
-0.0572
-0.0552
-0.0801
-0.0892
 0.0282
 0.1233
-0.2059
-0.0203
-0.0241
 0.0828
 0.0044
-0.0312
-0.1715
 0.0464
-0.0714
 0.0321
-0.0967
-0.0669
-0.0344
-0.0770
 0.0563
-0.1468
-0.0696
-0.0072
-0.0250
-0.0432
-0.0625
-0.0025
 0.0089
-0.0822
-0.1244
 0.0708
 0.0160
-0.1348
-0.0627
-0.1054
 0.1421
-0.0086
-0.0767
-0.1251
-0.0547
-0.1313
-0.0230
 0.0155
-0.0489
-0.0013
 0.0450
 0.0332
-0.0467
-0.1055
 0.0485
-0.1123
-0.0773
 0.0066
-0.0378
-0.0175
-0.0315
 0.0455
-0.1783
-0.0309
-0.0871
-0.0732
-0.0334
-0.0210
 0.0869
-0.0567
 0.0474
-0.1976
-0.0912
-0.1234
-0.0575
-0.0649
-0.0924
-0.0114
-0.0757
-0.1116
-0.0291
-0.0494
-0.0320
-0.1919
-0.0641
-0.0226
-0.1687
 0.0051
-0.1272
 0.0922
-0.0861
-0.0604
-0.1110
-0.0010
-0.0269
-0.1265
 0.0806
-0.0886
 0.0017
-0.0185
-0.0132
-0.0899
-0.1026
-0.0924
-0.0599
-0.0240
-0.0059
 0.0808
-0.0403
-0.1129
 0.0874
-0.0083
-0.1941
-0.1473
-0.0343
-0.0190
-0.0061
[torch.FloatTensor of size 512]
), ('layer4.0.downsample.1.running_var', 
1.00000e-02 *
  1.4797
  3.7974
  2.4287
  3.3282
  0.9573
  1.2175
  3.2409
  2.3881
  2.1434
  1.2457
  0.7617
  1.4534
  2.5956
  0.8145
  1.6107
  1.6402
  3.2195
  3.4207
  2.1148
  2.1447
  1.3177
  3.4486
  3.5753
  2.3377
  1.7639
  0.4832
  2.8323
  1.9312
  2.7409
  1.7613
  2.2178
  4.2271
  1.6393
  1.5593
  1.8405
  2.1813
  1.7244
  2.2655
  3.4637
  1.7027
  1.8760
  2.6324
  2.8153
  2.7661
  2.3234
  1.0893
  1.9429
  4.7713
  1.4600
  2.0709
  1.4191
  2.7877
  1.1790
  1.8164
  2.1013
  3.3222
  2.2192
  2.3825
  2.3330
  0.9719
  2.0101
  3.5948
  1.0746
  1.9807
  1.4409
  2.5751
  2.0639
  0.8093
  2.4897
  1.6369
  2.4380
  1.5503
  1.5689
  0.4939
  2.4048
  1.2735
  2.3085
  2.6694
  2.2144
  1.9275
  2.1960
  1.9823
  1.5991
  1.2718
  1.6494
  1.1768
  1.6908
  2.4666
  2.2209
  1.7352
  1.6695
  2.0054
  2.4338
  2.7665
  1.7877
  1.7486
  3.7940
  1.5464
  2.0674
  1.2233
  3.3432
  1.5017
  1.3682
  2.8803
  2.8052
  3.1367
  1.3165
  2.6028
  1.1627
  4.7816
  1.9174
  1.1349
  1.8531
  4.4545
  1.9873
  2.8756
  0.8903
  5.2529
  3.0137
  1.7425
  1.3181
  1.3588
  0.3196
  1.6511
  1.0533
  1.7726
  1.5709
  0.8342
  2.8195
  1.3471
  2.7743
  1.2433
  1.3966
  2.0415
  3.0947
  2.9389
  0.6835
  1.7954
  1.2979
  2.2241
  1.7859
  2.9926
  1.8215
  1.1935
  2.3874
  2.4038
  2.4009
  3.7302
  0.9383
  2.6433
  1.1903
  0.8586
  2.9513
  1.8345
  1.2961
  1.6569
  2.6276
  2.5337
  1.5654
  2.1501
  2.2197
  2.3241
  1.9577
  6.7689
  2.4607
  0.4769
  2.4836
  1.6700
  1.9427
  2.3107
  1.7138
  1.8203
  1.8894
  2.4965
  2.1896
  2.5463
  3.6071
  1.5943
  1.8717
  0.6850
  4.1029
  2.3362
  1.9808
  1.2859
  3.2598
  3.0832
  2.4954
  1.2277
  1.7085
  1.5440
  2.3446
  2.9087
  5.9264
  2.4963
  1.2804
  2.0356
  2.2088
  3.2317
  4.0116
  0.9682
  1.0246
  2.2698
  3.1086
  1.7329
  2.7773
  2.2563
  1.2499
  2.8079
  2.1120
  2.3154
  1.7160
  1.1038
  1.0535
  1.8923
  1.3009
  1.4156
  2.7678
  2.4117
  2.1302
  1.4714
  3.6207
  2.8543
  1.6743
  1.8916
  2.6885
  1.0043
  1.2075
  1.4134
  3.3789
  2.0699
  1.0101
  1.8902
  1.5572
  4.9192
  1.6134
  2.8751
  0.9142
  4.2635
  2.6588
  0.4665
  0.9972
  0.5729
  4.9139
  2.4250
  1.6319
  1.4276
  1.4179
  2.4507
  1.2122
  2.0003
  2.4153
  2.7940
  2.5884
  2.0835
  1.2927
  2.4182
  3.4140
  2.1667
  0.7899
  2.9858
  1.3404
  2.1888
  0.5248
  2.4414
  3.3217
  1.7424
  1.7588
  2.2876
  2.5777
  3.6217
  1.1590
  1.5665
  1.6886
  2.4274
  3.3398
  1.6618
  1.9122
  1.7813
  1.5589
  1.7732
  1.7904
  1.9168
  1.6683
  3.3678
  0.4529
  1.5886
  1.8173
  2.2744
  0.7121
  1.2488
  2.3408
  3.1028
  2.7164
  1.5513
  1.7717
  1.6643
  2.9922
  2.2554
  1.7378
  1.4135
  4.6231
  2.3767
  1.3142
  2.4729
  2.3066
  2.3765
  0.3310
  2.0579
  1.2455
  1.6946
  2.9351
  1.9246
  2.4107
  2.7394
  1.1762
  1.1401
  1.7944
  2.3090
  2.7987
  0.4324
  1.2802
  1.0422
  2.7148
  3.0546
  1.4914
  2.2719
  0.7397
  1.6942
  1.0857
  1.4844
  1.6265
  2.8345
  1.9868
  1.5381
  1.6695
  2.1697
  0.9911
  1.8018
  1.6002
  1.0949
  0.5767
  0.5036
  2.6319
  3.0716
  0.9113
  1.0563
  1.6398
  3.0490
  1.3609
  0.6690
  1.9067
  1.7289
  2.5994
  1.5580
  2.1489
  2.6740
  2.5944
  2.3086
  3.0448
  1.7901
  1.6307
  1.8869
  0.8179
  1.2594
  2.8673
  2.7379
  1.2914
  4.2257
  4.4290
  0.4725
  1.7098
  1.0509
  3.4835
  1.0232
  1.0880
  0.9897
  2.4268
  3.1363
  2.8433
  2.3923
  1.8523
  2.2239
  2.7958
  2.1271
  1.8237
  1.6664
  2.8019
  2.1324
  2.8550
  1.7067
  1.8597
  1.5267
  1.9043
  1.0217
  2.7563
  2.8792
  2.0045
  1.8991
  1.1335
  2.2008
  2.1896
  1.9881
  1.2837
  2.2065
  4.3280
  1.8434
  1.9879
  1.2119
  1.9007
  0.9195
  2.2533
  0.9538
  2.9914
  1.1779
  1.0417
  2.5136
  2.4045
  1.4470
  2.0585
  2.0260
  1.3212
  1.7874
  1.6841
  1.8557
  0.7608
  2.6879
  1.6277
  1.3738
  0.5450
  1.2819
  3.6177
  0.8542
  3.0353
  1.1260
  3.8203
  1.9922
  1.6696
  2.0955
  1.6163
  0.9182
  1.0645
  1.6338
  2.1920
  2.2267
  1.4893
  2.3184
  1.4378
  1.3713
  1.8360
  2.0984
  2.4619
  2.3726
  2.2280
  1.8140
  2.0319
  0.3983
  1.9480
  2.7284
  2.8425
  2.3305
  2.8359
  0.6877
  1.2102
  1.1683
  3.8713
  1.6494
  2.0911
  1.9379
  1.4409
  1.5669
  0.9922
  3.0646
  1.4635
  1.4432
  4.0783
  1.7921
  1.8565
  1.4059
  2.0364
  2.4347
  2.1271
  1.6969
  1.6637
  1.1990
  3.1063
  0.5982
  2.7176
  2.5192
  2.5004
  1.0163
  2.3461
  2.9223
  1.0756
  1.7914
  0.9306
  2.5531
  1.6042
  1.2558
  1.8730
  1.3725
  3.0774
  1.1870
  3.7628
  1.7584
  1.7254
  2.6002
  1.8345
  1.8618
  1.3726
  3.4435
  1.4385
  1.1154
[torch.FloatTensor of size 512]
), ('layer4.1.conv1.weight', 
( 0 , 0 ,.,.) = 
 -8.0284e-03 -5.7776e-03  6.4154e-03
  5.0498e-03 -6.7796e-03  1.2691e-02
  1.3331e-02  1.4523e-02  2.4522e-02

( 0 , 1 ,.,.) = 
 -1.9876e-03  1.2466e-02  1.0494e-02
 -1.9364e-02 -1.6696e-02 -1.1857e-02
 -1.1569e-02 -3.7674e-03 -3.4679e-03

( 0 , 2 ,.,.) = 
 -1.1440e-02 -1.3884e-02  1.1559e-03
 -1.7906e-02 -2.9349e-02 -1.3876e-02
 -1.4057e-02 -2.6989e-02 -2.3963e-02
    ... 

( 0 ,509,.,.) = 
 -6.3040e-03 -3.1167e-03 -1.3304e-02
  7.1623e-03  6.4669e-03  1.6063e-02
 -1.0750e-02 -1.0480e-02 -6.1070e-03

( 0 ,510,.,.) = 
  7.4484e-03  6.3878e-03 -1.2579e-02
 -7.7356e-03  1.8112e-03 -1.7890e-02
 -2.9142e-03  7.7705e-03 -9.7314e-03

( 0 ,511,.,.) = 
  2.1760e-02  2.2364e-02  2.2731e-02
  2.6681e-02  2.9127e-02  3.3356e-02
  1.2892e-02 -3.5818e-03  5.3022e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -1.0597e-02 -9.1551e-03 -2.3418e-02
 -1.0768e-02 -3.3171e-03 -1.8559e-02
 -1.8607e-02 -4.2634e-03 -1.5591e-02

( 1 , 1 ,.,.) = 
 -2.6090e-02 -2.2517e-02 -3.0593e-02
 -3.9406e-02 -2.6639e-02 -2.8202e-02
 -2.6143e-02 -1.9647e-02 -2.1466e-02

( 1 , 2 ,.,.) = 
 -3.5259e-03  1.6623e-03 -6.5624e-03
 -5.0597e-03 -8.7162e-04 -5.3742e-03
 -7.9651e-03 -9.7778e-03 -1.0736e-02
    ... 

( 1 ,509,.,.) = 
  1.8492e-02 -3.6799e-03  1.0043e-02
 -5.2974e-03 -2.0757e-02 -1.5120e-02
  2.1435e-02  6.4916e-03  4.7660e-03

( 1 ,510,.,.) = 
 -1.8810e-02 -6.0469e-04 -7.6999e-03
 -1.7697e-02 -7.8692e-03 -1.6543e-02
 -1.7206e-02 -2.4746e-02 -3.0270e-02

( 1 ,511,.,.) = 
 -3.1191e-02 -1.4363e-02  2.2032e-03
 -1.2033e-02 -2.3699e-03 -1.6630e-02
 -1.2905e-02 -1.5363e-02 -3.6297e-03
      ⋮  

( 2 , 0 ,.,.) = 
 -3.2648e-02 -4.8158e-03 -2.0476e-02
 -2.5846e-02 -1.4660e-03 -2.8170e-02
 -2.6640e-02  4.3022e-03 -2.7636e-02

( 2 , 1 ,.,.) = 
 -6.3289e-03 -1.5401e-02 -1.3096e-03
 -1.7499e-02 -2.6212e-02 -2.3646e-02
 -7.3207e-03 -1.5592e-02 -8.9578e-03

( 2 , 2 ,.,.) = 
  8.9701e-04 -6.6914e-03 -5.3129e-03
 -1.1727e-03 -1.0726e-02 -9.0103e-03
  3.2311e-03 -4.5854e-03  4.3512e-03
    ... 

( 2 ,509,.,.) = 
 -2.1822e-02 -3.6889e-02 -2.2588e-02
 -1.3054e-02 -3.4191e-02 -2.7238e-02
 -1.2383e-02 -2.3452e-02 -2.2486e-02

( 2 ,510,.,.) = 
  6.8177e-03  2.1561e-02  1.3674e-02
  3.1192e-03  1.0660e-02  1.0409e-02
  8.0477e-03 -4.6817e-03 -4.3912e-03

( 2 ,511,.,.) = 
 -1.1983e-02 -1.6201e-02 -2.2626e-02
 -1.3461e-02 -7.0928e-03 -1.4384e-02
 -2.4456e-02  1.4885e-02  1.2247e-02
...     
      ⋮  

(509, 0 ,.,.) = 
 -2.6347e-02 -2.9923e-02 -3.7810e-02
 -1.5663e-02 -4.1126e-03 -1.1482e-02
 -1.3415e-02 -1.5432e-02 -1.8204e-02

(509, 1 ,.,.) = 
 -3.8392e-03 -1.1093e-02 -8.0841e-04
 -5.9634e-03 -5.9165e-03 -9.3332e-03
 -2.2761e-03  5.4781e-03 -5.6050e-03

(509, 2 ,.,.) = 
 -1.8406e-03 -2.8134e-03  8.3246e-03
 -1.2453e-03  2.1453e-04  7.4868e-03
  1.3450e-02  3.0599e-02  2.6405e-02
    ... 

(509,509,.,.) = 
  3.5268e-04  2.3897e-03  6.2558e-03
 -1.4338e-02 -2.3146e-02 -1.9024e-02
 -2.7306e-02 -3.0079e-02 -3.1762e-02

(509,510,.,.) = 
  1.4584e-02  4.3430e-03  1.2053e-02
 -6.1130e-03 -2.8539e-02 -1.8268e-02
 -1.6844e-02 -4.7816e-02 -2.6274e-02

(509,511,.,.) = 
 -1.8850e-02 -9.3396e-03  7.8905e-03
 -1.5322e-03  8.3153e-03  1.7783e-02
 -8.3318e-03 -1.5759e-02 -1.2061e-02
      ⋮  

(510, 0 ,.,.) = 
  9.9578e-03  7.4573e-03 -1.8738e-03
 -1.7752e-03 -6.8015e-04 -7.4443e-03
 -1.8319e-02 -1.4264e-02 -7.1446e-03

(510, 1 ,.,.) = 
  7.8524e-03 -2.6520e-03 -1.7556e-02
  4.5240e-03 -4.8661e-03 -1.5215e-02
 -5.0211e-03 -1.1864e-02 -1.4846e-02

(510, 2 ,.,.) = 
  2.9163e-02  1.0344e-02  2.4736e-02
  1.2012e-02 -1.0346e-02  3.5472e-03
  8.2238e-03 -1.8237e-02 -5.4892e-03
    ... 

(510,509,.,.) = 
 -8.8434e-03 -4.3184e-03 -5.7536e-03
  7.7230e-03 -4.1936e-04  7.7260e-03
  1.3536e-02  1.5705e-02  2.0893e-02

(510,510,.,.) = 
  1.6743e-03  1.9720e-03  2.1567e-02
 -8.0074e-03 -4.6606e-03  4.0560e-03
 -1.6688e-02 -1.3754e-02 -1.1708e-02

(510,511,.,.) = 
 -9.7959e-03 -9.4502e-03 -9.3443e-03
  6.9547e-03 -3.9134e-05  6.2691e-03
 -1.3193e-02  9.3272e-04  1.4579e-02
      ⋮  

(511, 0 ,.,.) = 
 -1.4963e-03  5.5133e-04  1.1571e-02
  1.0174e-02  1.7889e-03  1.1035e-02
  7.0212e-03  1.4651e-03  1.2769e-03

(511, 1 ,.,.) = 
 -1.3021e-02  6.4109e-03 -1.5199e-02
  2.4775e-02  2.1926e-02  3.3679e-02
  2.6471e-04 -3.0235e-03  1.1690e-02

(511, 2 ,.,.) = 
 -2.9665e-02 -1.5314e-02 -1.7500e-02
 -1.8339e-02 -2.0845e-02 -1.5494e-02
 -1.6086e-03  1.0831e-02 -1.4309e-02
    ... 

(511,509,.,.) = 
 -7.7044e-03 -2.1100e-02 -2.2816e-02
  5.7688e-03  1.9362e-04  7.7105e-04
 -6.1357e-03  9.7275e-03 -2.5464e-03

(511,510,.,.) = 
  1.1043e-02  2.4205e-02  3.4213e-02
  2.9181e-02  2.6904e-02  4.5372e-02
 -2.1594e-02 -1.1072e-03 -7.8312e-03

(511,511,.,.) = 
 -8.3287e-03 -7.9521e-03 -5.3358e-03
 -6.2527e-04 -5.3243e-03 -8.6296e-03
  3.6094e-03 -1.2544e-03 -4.3801e-03
[torch.FloatTensor of size 512x512x3x3]
), ('layer4.1.bn1.weight', 
 0.2587
 0.3073
 0.2595
 0.3223
 0.2662
 0.2652
 0.2575
 0.2660
 0.2766
 0.2414
 0.3045
 0.2853
 0.2821
 0.2880
 0.3094
 0.3444
 0.3155
 0.4129
 0.2110
 0.2903
 0.2496
 0.2601
 0.2967
 0.3033
 0.4152
 0.2719
 0.3661
 0.3251
 0.3898
 0.3346
 0.2753
 0.2712
 0.2414
 0.3351
 0.3394
 0.3167
 0.3360
 0.2666
 0.2109
 0.2705
 0.2587
 0.3070
 0.2720
 0.2316
 0.2885
 0.2884
 0.2955
 0.3057
 0.3043
 0.2596
 0.2673
 0.1929
 0.3136
 0.3593
 0.2622
 0.2931
 0.3295
 0.2514
 0.3208
 0.2798
 0.3259
 0.2939
 0.2390
 0.3105
 0.3471
 0.2812
 0.2148
 0.2997
 0.3061
 0.2740
 0.2791
 0.3790
 0.3592
 0.3247
 0.2995
 0.2735
 0.3356
 0.2703
 0.3255
 0.3127
 0.2783
 0.2702
 0.3900
 0.2942
 0.2899
 0.3461
 0.3432
 0.4685
 0.2634
 0.2553
 0.3019
 0.3961
 0.2742
 0.2995
 0.3858
 0.2785
 0.3212
 0.3109
 0.3642
 0.2193
 0.2643
 0.2333
 0.3151
 0.3102
 0.2936
 0.2374
 0.2419
 0.2976
 0.3335
 0.2619
 0.3984
 0.2721
 0.2718
 0.2678
 0.2757
 0.2445
 0.3508
 0.2174
 0.3309
 0.2653
 0.2564
 0.1748
 0.3177
 0.2751
 0.2067
 0.2905
 0.2762
 0.3329
 0.2738
 0.3224
 0.2199
 0.2997
 0.2206
 0.3213
 0.2760
 0.3927
 0.3174
 0.2698
 0.2988
 0.2610
 0.2550
 0.2788
 0.4445
 0.2862
 0.3606
 0.3279
 0.2869
 0.3294
 0.2244
 0.2338
 0.1754
 0.2318
 0.3186
 0.3322
 0.2255
 0.3041
 0.2837
 0.3276
 0.2392
 0.3668
 0.1971
 0.2946
 0.3613
 0.2736
 0.2554
 0.2860
 0.2511
 0.3490
 0.3253
 0.2934
 0.2027
 0.2580
 0.2200
 0.3089
 0.3074
 0.3332
 0.2943
 0.3375
 0.2330
 0.2611
 0.3383
 0.2837
 0.3546
 0.3093
 0.3791
 0.2197
 0.2648
 0.2830
 0.2587
 0.3588
 0.2830
 0.3971
 0.3194
 0.3066
 0.2754
 0.2647
 0.0970
 0.2182
 0.2334
 0.2624
 0.1829
 0.2933
 0.2747
 0.3001
 0.2996
 0.3107
 0.3256
 0.2940
 0.3901
 0.2790
 0.3030
 0.2838
 0.3010
 0.3044
 0.3479
 0.3087
 0.2611
 0.1958
 0.2941
 0.2558
 0.2889
 0.3148
 0.2516
 0.2664
 0.2862
 0.3940
 0.2933
 0.2781
 0.3796
 0.3022
 0.2583
 0.3021
 0.2784
 0.2967
 0.2994
 0.3856
 0.3277
 0.2587
 0.2539
 0.2824
 0.2634
 0.1489
 0.2205
 0.3929
 0.3401
 0.2717
 0.2789
 0.2917
 0.3177
 0.1992
 0.3684
 0.3120
 0.3201
 0.2810
 0.2302
 0.2779
 0.2865
 0.2858
 0.2713
 0.1601
 0.2496
 0.2895
 0.3154
 0.3443
 0.3285
 0.3444
 0.3251
 0.3235
 0.3375
 0.2282
 0.2128
 0.1795
 0.3077
 0.3005
 0.2775
 0.3054
 0.2914
 0.3535
 0.2871
 0.2669
 0.3961
 0.2674
 0.3898
 0.3183
 0.3242
 0.2789
 0.1911
 0.2569
 0.3427
 0.2464
 0.2778
 0.2098
 0.3019
 0.3145
 0.3271
 0.2914
 0.2619
 0.2643
 0.3039
 0.2520
 0.2099
 0.3643
 0.2915
 0.1957
 0.3286
 0.2355
 0.3210
 0.2982
 0.3388
 0.3450
 0.3716
 0.2898
 0.2846
 0.2805
 0.2219
 0.2910
 0.2681
 0.3163
 0.1964
 0.3176
 0.3092
 0.2706
 0.2505
 0.2508
 0.3166
 0.3583
 0.1563
 0.2608
 0.2892
 0.3401
 0.2891
 0.3126
 0.2172
 0.2459
 0.2651
 0.4052
 0.2986
 0.3026
 0.3773
 0.2262
 0.2675
 0.2900
 0.3759
 0.3201
 0.2567
 0.3443
 0.2348
 0.3057
 0.2347
 0.3277
 0.2938
 0.2746
 0.2805
 0.2421
 0.3590
 0.2622
 0.2773
 0.2396
 0.2134
 0.2727
 0.2984
 0.2744
 0.2591
 0.2628
 0.3568
 0.2009
 0.3220
 0.2868
 0.2561
 0.3113
 0.2138
 0.3136
 0.2745
 0.3046
 0.3042
 0.1972
 0.2815
 0.2542
 0.2983
 0.2613
 0.2668
 0.3142
 0.2930
 0.3800
 0.1966
 0.2948
 0.3363
 0.2713
 0.3625
 0.2909
 0.2695
 0.3111
 0.3242
 0.3009
 0.3231
 0.3051
 0.2012
 0.2716
 0.3692
 0.2694
 0.1481
 0.2858
 0.2819
 0.2391
 0.2867
 0.3466
 0.3431
 0.2365
 0.3357
 0.1685
 0.2925
 0.3092
 0.3127
 0.1883
 0.2561
 0.3086
 0.1732
 0.2989
 0.3235
 0.2693
 0.2630
 0.2913
 0.2786
 0.3124
 0.3098
 0.2695
 0.2403
 0.2906
 0.2784
 0.2654
 0.3485
 0.3939
 0.3033
 0.3145
 0.2622
 0.1540
 0.2790
 0.2967
 0.1954
 0.2632
 0.2957
 0.2581
 0.3231
 0.2795
 0.2859
 0.3139
 0.2488
 0.2404
 0.3714
 0.2649
 0.2267
 0.2878
 0.3462
 0.3063
 0.3180
 0.1726
 0.3153
 0.2625
 0.3020
 0.2996
 0.3632
 0.1541
 0.3192
 0.2200
 0.2894
 0.2622
 0.2534
 0.2935
 0.3208
 0.2231
 0.2743
 0.3023
 0.2829
 0.2394
 0.2506
 0.3512
 0.3366
 0.2666
 0.2930
 0.3049
 0.2321
 0.3397
 0.2727
 0.2900
 0.3146
 0.2682
 0.3094
 0.3718
 0.3387
 0.3202
 0.2423
 0.2745
 0.2966
 0.2500
 0.2329
 0.3419
 0.2928
 0.3536
 0.3739
 0.1935
 0.2670
 0.2846
 0.2583
 0.3783
 0.2826
 0.2929
 0.2728
 0.3645
 0.2770
 0.2756
 0.2523
 0.2500
[torch.FloatTensor of size 512]
), ('layer4.1.bn1.bias', 
-0.1668
-0.3019
-0.2187
-0.2917
-0.1971
-0.2325
-0.1869
-0.1857
-0.2474
-0.1629
-0.2448
-0.2508
-0.1895
-0.2651
-0.3250
-0.3811
-0.2953
-0.4963
-0.0294
-0.2724
-0.2007
-0.2220
-0.2945
-0.2579
-0.5152
-0.1994
-0.5016
-0.2736
-0.4528
-0.3968
-0.2281
-0.1772
-0.1293
-0.2655
-0.3252
-0.3232
-0.3337
-0.1901
-0.0692
-0.2196
-0.2132
-0.2565
-0.1646
-0.1567
-0.2087
-0.2178
-0.2480
-0.2767
-0.3071
-0.1988
-0.1985
-0.0235
-0.2458
-0.4156
-0.1660
-0.1923
-0.3328
-0.1481
-0.3047
-0.2277
-0.3182
-0.2744
-0.1643
-0.3365
-0.4050
-0.2082
-0.0621
-0.2671
-0.2809
-0.2185
-0.2148
-0.4465
-0.3376
-0.3213
-0.2921
-0.1998
-0.3369
-0.2092
-0.2831
-0.2893
-0.1719
-0.2189
-0.4016
-0.2484
-0.2070
-0.3849
-0.3753
-0.5874
-0.1637
-0.1748
-0.2217
-0.5067
-0.2496
-0.2117
-0.4291
-0.1944
-0.3089
-0.2621
-0.4096
-0.0602
-0.2009
-0.1316
-0.3336
-0.2627
-0.2320
-0.0910
-0.1560
-0.2889
-0.3286
-0.1628
-0.5128
-0.2036
-0.1726
-0.1844
-0.2285
-0.1925
-0.3432
-0.0929
-0.3138
-0.1912
-0.1926
-0.0342
-0.3268
-0.1699
-0.0828
-0.2417
-0.2069
-0.3870
-0.2210
-0.2867
-0.0526
-0.3092
-0.0655
-0.2594
-0.2160
-0.5062
-0.2905
-0.2125
-0.3124
-0.2128
-0.1946
-0.2520
-0.5475
-0.2321
-0.3350
-0.3473
-0.2158
-0.3603
-0.0759
-0.1472
-0.0327
-0.1404
-0.3128
-0.3063
-0.1120
-0.2664
-0.2700
-0.3112
-0.1519
-0.3843
-0.0645
-0.2373
-0.4227
-0.2546
-0.1611
-0.2350
-0.1524
-0.3494
-0.3453
-0.2081
-0.0918
-0.2025
-0.1246
-0.2533
-0.2768
-0.3156
-0.2530
-0.3957
-0.0981
-0.1257
-0.3697
-0.2333
-0.3664
-0.2829
-0.4320
-0.0836
-0.1583
-0.2395
-0.1818
-0.4408
-0.2376
-0.4450
-0.3232
-0.2787
-0.1858
-0.2137
 0.0481
-0.1058
-0.1093
-0.2035
-0.0496
-0.2117
-0.1598
-0.2389
-0.2830
-0.2878
-0.3406
-0.2560
-0.4468
-0.2444
-0.2492
-0.2222
-0.2792
-0.3005
-0.4180
-0.2568
-0.1872
-0.0270
-0.2645
-0.1873
-0.3022
-0.3400
-0.1803
-0.1810
-0.2079
-0.4775
-0.2047
-0.1878
-0.4504
-0.2516
-0.1657
-0.2765
-0.2329
-0.2446
-0.2956
-0.4163
-0.2816
-0.1571
-0.2199
-0.2125
-0.1684
 0.0356
-0.0914
-0.4484
-0.3535
-0.2212
-0.2550
-0.2509
-0.2702
-0.0599
-0.3505
-0.2924
-0.2360
-0.2339
-0.1259
-0.2597
-0.2267
-0.1978
-0.1371
-0.0129
-0.1175
-0.2527
-0.3099
-0.3231
-0.3468
-0.3553
-0.3537
-0.3315
-0.3713
-0.1091
-0.0959
-0.0258
-0.2756
-0.2808
-0.2012
-0.2812
-0.1991
-0.3948
-0.2257
-0.2469
-0.4211
-0.2110
-0.4670
-0.3069
-0.3549
-0.2337
-0.0612
-0.1321
-0.2968
-0.1870
-0.2316
-0.0686
-0.3113
-0.2895
-0.3149
-0.2686
-0.2081
-0.2096
-0.3011
-0.1810
-0.0227
-0.3873
-0.2665
-0.0225
-0.2973
-0.0973
-0.2980
-0.3219
-0.2926
-0.3196
-0.4332
-0.1980
-0.2117
-0.2302
-0.0980
-0.2344
-0.2154
-0.2921
-0.0350
-0.3361
-0.2620
-0.2188
-0.1566
-0.1795
-0.2726
-0.4103
 0.0413
-0.1507
-0.2552
-0.3137
-0.2466
-0.2961
-0.0938
-0.1481
-0.2129
-0.5480
-0.2915
-0.2802
-0.5077
-0.1306
-0.1862
-0.2400
-0.4362
-0.3017
-0.1633
-0.3447
-0.1047
-0.2846
-0.1244
-0.3036
-0.2404
-0.2333
-0.2494
-0.1866
-0.3294
-0.1677
-0.2540
-0.1295
-0.0512
-0.1966
-0.2801
-0.1702
-0.1879
-0.1850
-0.3274
-0.0369
-0.2979
-0.2612
-0.1889
-0.3270
-0.1377
-0.2787
-0.2201
-0.2417
-0.2834
-0.0555
-0.2538
-0.1040
-0.2660
-0.1644
-0.1723
-0.2672
-0.2797
-0.4214
-0.0378
-0.2386
-0.3498
-0.2435
-0.4348
-0.2554
-0.1719
-0.2836
-0.3316
-0.2787
-0.2879
-0.2640
-0.0560
-0.1789
-0.4195
-0.2152
 0.0567
-0.2359
-0.2249
-0.0911
-0.2644
-0.3875
-0.3317
-0.1415
-0.3425
-0.0020
-0.1941
-0.2821
-0.2809
-0.0965
-0.1841
-0.2971
-0.0173
-0.3043
-0.3013
-0.1729
-0.1872
-0.2683
-0.2033
-0.3059
-0.2939
-0.2163
-0.1889
-0.2581
-0.2296
-0.2066
-0.3462
-0.4298
-0.2600
-0.3095
-0.1800
-0.0116
-0.2124
-0.2552
-0.0523
-0.2216
-0.2605
-0.2134
-0.2867
-0.2556
-0.2275
-0.3437
-0.1698
-0.1560
-0.4120
-0.2067
-0.1159
-0.2408
-0.3093
-0.2621
-0.2593
-0.0135
-0.3099
-0.2179
-0.2766
-0.2400
-0.3934
 0.0072
-0.2982
-0.0930
-0.2166
-0.1635
-0.1827
-0.2308
-0.2525
-0.0991
-0.2325
-0.2938
-0.2480
-0.0934
-0.1911
-0.3772
-0.3369
-0.1606
-0.2752
-0.3005
-0.1372
-0.2990
-0.2156
-0.2622
-0.3160
-0.1342
-0.2903
-0.3865
-0.2916
-0.3243
-0.2051
-0.2656
-0.2359
-0.1508
-0.1063
-0.3595
-0.2312
-0.3046
-0.4178
-0.0276
-0.2204
-0.2426
-0.1616
-0.4789
-0.1713
-0.2802
-0.2305
-0.4327
-0.2413
-0.1862
-0.1486
-0.1507
[torch.FloatTensor of size 512]
), ('layer4.1.bn1.running_mean', 
-0.6163
-0.7110
-0.4544
-0.6143
-0.7875
-0.5289
-0.6214
-0.5824
-0.4067
-0.5256
-0.5125
-0.5337
-0.5658
-0.6845
-0.5146
-0.6323
-0.5391
-0.6838
-0.6577
-0.4716
-0.5249
-0.4059
-0.6028
-0.5246
-0.8913
-0.6528
-0.5048
-0.5008
-0.5067
-0.5973
-0.5524
-0.6383
-0.6782
-0.7263
-0.5725
-0.6456
-0.7138
-0.6146
-0.5346
-0.5177
-0.4593
-0.6618
-0.5113
-0.5810
-0.6244
-0.5531
-0.5563
-0.5481
-0.6089
-0.4626
-0.7311
-0.6632
-0.6316
-0.7381
-0.6137
-0.6237
-0.4964
-0.4489
-0.6428
-0.5968
-0.5530
-0.3822
-0.6110
-0.4530
-0.4679
-0.5221
-0.6356
-0.4861
-0.7772
-0.5096
-0.5782
-0.7054
-0.6667
-0.6244
-0.7292
-0.7311
-0.6557
-0.6871
-0.6767
-0.5567
-0.6059
-0.6680
-0.7162
-0.6105
-0.5778
-0.6501
-0.6248
-1.0751
-0.6764
-0.7277
-0.5838
-0.5172
-0.6578
-0.6765
-0.7828
-0.5213
-0.5852
-0.6051
-0.6174
-0.6495
-0.7123
-0.6940
-0.5532
-0.6595
-0.5406
-0.7931
-0.5718
-0.5847
-0.6132
-0.6935
-0.6868
-0.6694
-0.5328
-0.6436
-0.6820
 1.0943
-0.7218
-0.5527
-0.6364
-0.7036
-0.4954
-0.7242
-0.5977
-0.4918
-0.6130
-0.5662
-0.5606
-0.5216
-0.6229
-0.6632
-0.6878
-0.5284
-0.6767
-0.6877
-0.4909
-0.5646
-0.5312
-0.5946
-0.4761
-0.4790
-0.4377
-0.5075
-0.7755
-0.6303
-0.7138
-0.6351
-0.4867
-0.6949
-0.5841
-0.5315
-0.7750
-0.4143
-0.6275
-0.7366
-0.4332
-0.5265
-0.5596
-0.7054
-0.5708
-0.6828
-0.5689
-0.6370
-0.6888
-0.6580
-0.7045
-0.5881
-0.5664
-0.7268
-0.4533
-0.5892
-0.3759
-0.5606
-0.4196
-0.6223
-0.5858
-0.6233
-0.5599
-0.6126
-0.6092
-0.5808
-0.6016
-0.6788
-0.6251
-0.5953
-0.6111
-0.5539
-0.6734
-0.7272
-0.6097
-0.5319
-0.6154
-0.6616
-0.5251
-0.7204
-0.5141
-0.5327
 0.4233
-0.5529
-0.5242
-0.6593
-0.4511
-0.6349
-0.3456
-0.6631
-0.5920
-0.5973
-0.6211
-0.7120
-0.6314
-0.5040
-0.6516
-0.6550
-0.7142
-0.5808
-0.6789
-0.6201
-0.4061
-0.5925
-0.5558
-0.5571
-0.4889
-0.5365
-0.5812
-0.4340
-0.6515
-0.7659
-0.7258
-0.6003
-0.5486
-0.5736
-0.6739
-0.7918
-0.7040
-0.7296
-0.5405
-0.7658
-0.7979
-0.4340
-0.4951
-0.6078
-0.5947
-0.4997
-0.6277
-0.7792
-0.5649
-0.5368
-0.5487
-0.4484
-0.5827
-0.6600
-0.6217
-0.4814
-0.5351
-0.7170
-0.6168
-0.5111
-0.5243
-0.5335
-0.5807
-0.5547
-0.6503
-0.4587
-0.5209
-0.6062
-0.6173
-0.5516
-0.6006
-0.6239
-0.5478
-0.4163
-0.4006
-0.6529
-0.6296
-0.6285
-0.6954
-0.6962
-0.6200
-0.6101
-0.7406
-0.5545
-0.6118
-0.4561
-0.7019
-0.4928
-0.6741
-0.5356
-0.5084
-0.5760
-0.7814
-0.6067
-0.5649
-0.7067
-0.5240
-0.5461
-0.6110
-0.4931
-0.5836
-0.5622
-0.6459
-0.6308
-0.9025
-0.7854
-0.5653
-0.7293
-0.5926
-0.5592
-0.7440
-0.7482
-0.6664
-0.7048
-0.7439
-0.5878
-0.8028
-0.6192
-0.4616
-0.5855
-0.6742
-0.7888
-0.6651
-0.3683
-0.6134
-0.4842
-0.3682
-0.6536
-0.7631
-0.6092
-0.4839
-0.6507
-0.3905
-0.6862
-0.4401
-0.6525
-0.5656
-0.6717
-0.7421
-0.7229
-0.4674
-0.5751
-0.5511
-0.5586
-0.5558
-0.4956
-0.7403
-0.6855
-0.3486
-0.6537
-0.4844
-0.6349
-0.5598
-0.5948
-0.4812
-0.5334
-0.5976
-0.6261
-0.6772
-0.7516
-0.5493
-0.3516
-0.5009
-0.6872
-0.5960
-0.7015
-0.7018
-0.6167
-0.6467
-0.6626
-0.6280
-0.5683
-0.4376
-0.5755
-0.4337
-0.7240
-0.6438
-0.7462
-0.5832
-0.4346
-0.4831
-0.7087
-0.6292
-0.5748
-0.6452
-0.6257
-0.5396
-0.6186
-0.6352
-0.8040
-0.6863
-0.5090
-0.5783
-0.4635
-0.6626
-0.6057
-0.5455
-0.6903
-0.4256
-0.6280
-0.6005
-0.6254
-0.6561
-0.6311
 0.0700
-0.5386
-0.6303
-0.6126
-0.5625
-0.7177
-0.7150
-0.4435
-0.5034
-0.4601
-0.7134
-0.6045
-0.6175
-0.1311
-0.4606
-0.5279
-0.4703
-0.6170
-0.5399
-0.6533
-0.4893
-0.6054
-0.5828
-0.4321
-0.5590
-0.6121
-0.4322
-0.5652
-0.5552
-0.5527
-0.7014
-0.8307
-0.7236
-0.5809
-0.5889
-0.3087
-0.5081
-0.6251
-0.5052
-0.5977
-0.4824
-0.5811
-0.5692
-0.5516
-0.7365
-0.5498
-0.6327
-0.5069
-0.7376
-0.6093
-0.4489
-0.4150
-0.8244
-0.6467
-0.6521
-0.7903
-0.5506
-0.5928
-0.5616
-0.5244
-0.7687
-0.4464
-0.5756
-0.6635
-0.8333
-0.5849
-0.6492
-0.6747
-0.5918
-0.7004
-0.5709
-0.6782
-0.5677
-0.5274
-0.6032
-0.7329
-0.7639
-0.7142
-0.5434
-0.5954
-0.3667
-0.8357
-0.5958
-0.5528
-0.7045
-0.7305
-0.5834
-0.6888
-0.6295
-0.4671
-0.4950
-0.3886
-0.7052
-0.7428
-0.4397
-0.6197
-0.6044
-0.7213
-0.7726
-0.5705
-0.5343
-0.6056
-0.5059
-0.7181
-0.6812
-0.6400
-0.6280
-0.6755
-0.6645
-0.6709
-0.6787
-0.7700
[torch.FloatTensor of size 512]
), ('layer4.1.bn1.running_var', 
 0.1573
 0.1215
 0.1109
 0.1383
 0.1542
 0.1192
 0.1380
 0.1565
 0.1040
 0.1227
 0.1210
 0.1088
 0.1507
 0.1229
 0.1182
 0.1031
 0.1236
 0.1420
 0.2725
 0.1137
 0.1290
 0.1197
 0.1203
 0.1205
 0.1339
 0.1468
 0.0918
 0.1423
 0.1281
 0.1053
 0.1406
 0.1438
 0.1694
 0.1591
 0.1215
 0.1267
 0.1491
 0.1544
 0.1516
 0.1206
 0.1409
 0.1487
 0.1340
 0.1212
 0.1692
 0.1352
 0.1200
 0.1342
 0.1134
 0.1254
 0.1213
 0.1793
 0.1328
 0.1295
 0.1582
 0.1491
 0.1182
 0.1430
 0.1205
 0.1282
 0.1373
 0.1034
 0.1206
 0.0871
 0.0848
 0.1330
 0.2006
 0.1261
 0.1236
 0.1034
 0.1263
 0.1355
 0.1411
 0.1224
 0.1370
 0.1594
 0.1325
 0.1217
 0.1415
 0.1338
 0.1612
 0.1261
 0.1384
 0.1487
 0.1365
 0.1152
 0.1112
 0.2107
 0.1501
 0.1499
 0.1466
 0.1247
 0.1303
 0.1796
 0.1399
 0.1382
 0.1268
 0.1446
 0.1197
 0.1814
 0.1356
 0.1555
 0.1191
 0.1518
 0.1481
 0.1677
 0.1664
 0.1375
 0.1302
 0.1575
 0.1044
 0.1489
 0.1323
 0.1657
 0.1363
 0.1650
 0.1388
 0.1572
 0.1097
 0.1532
 0.1118
 0.1582
 0.1240
 0.1371
 0.1479
 0.1441
 0.1202
 0.1072
 0.1245
 0.1441
 0.1704
 0.1055
 0.1728
 0.1529
 0.1170
 0.1075
 0.1315
 0.1389
 0.1054
 0.1395
 0.1459
 0.1136
 0.1329
 0.1357
 0.1532
 0.1205
 0.1302
 0.1067
 0.1683
 0.1299
 0.1858
 0.1210
 0.1353
 0.1287
 0.1354
 0.1247
 0.1327
 0.1452
 0.1283
 0.1384
 0.1480
 0.1390
 0.1259
 0.1230
 0.1613
 0.1562
 0.1297
 0.1444
 0.1217
 0.1486
 0.1254
 0.1371
 0.1776
 0.1259
 0.1266
 0.1432
 0.1145
 0.1126
 0.1514
 0.1623
 0.1124
 0.1401
 0.1290
 0.1095
 0.1299
 0.1432
 0.1534
 0.1387
 0.1410
 0.0994
 0.1383
 0.1388
 0.1094
 0.1412
 0.1450
 0.1345
 0.1807
 0.1669
 0.1797
 0.1446
 0.1243
 0.1500
 0.1966
 0.1428
 0.1178
 0.1329
 0.1239
 0.1487
 0.1447
 0.1233
 0.1230
 0.1421
 0.1380
 0.1261
 0.1041
 0.1362
 0.1259
 0.1976
 0.1114
 0.1175
 0.0917
 0.1185
 0.1305
 0.1413
 0.1461
 0.1311
 0.1972
 0.1353
 0.1068
 0.1346
 0.1844
 0.1347
 0.1281
 0.1329
 0.1151
 0.1365
 0.1553
 0.1578
 0.1092
 0.1538
 0.1433
 0.1616
 0.1567
 0.1194
 0.1202
 0.1098
 0.1202
 0.1117
 0.1285
 0.1747
 0.1419
 0.1255
 0.1801
 0.1364
 0.1383
 0.1418
 0.1395
 0.1644
 0.1854
 0.1917
 0.1479
 0.1276
 0.1312
 0.1268
 0.1060
 0.1379
 0.1168
 0.1260
 0.1124
 0.1565
 0.1202
 0.2099
 0.1336
 0.1320
 0.1521
 0.1538
 0.1600
 0.1196
 0.1402
 0.1164
 0.1405
 0.1027
 0.1246
 0.1134
 0.1128
 0.1233
 0.1620
 0.1926
 0.1764
 0.1251
 0.1078
 0.1889
 0.1207
 0.1188
 0.1135
 0.1182
 0.1275
 0.1302
 0.1226
 0.1329
 0.2516
 0.1389
 0.1333
 0.1921
 0.1150
 0.1574
 0.1364
 0.1345
 0.1353
 0.1439
 0.1305
 0.1363
 0.2558
 0.1277
 0.1620
 0.1404
 0.1460
 0.1436
 0.2171
 0.1201
 0.1373
 0.1306
 0.1311
 0.1308
 0.1287
 0.1161
 0.2168
 0.1480
 0.1095
 0.1442
 0.1021
 0.1147
 0.1490
 0.1643
 0.1194
 0.1053
 0.1203
 0.1042
 0.1046
 0.1572
 0.1197
 0.1417
 0.1291
 0.1438
 0.1530
 0.1424
 0.1470
 0.1178
 0.1345
 0.1161
 0.1184
 0.1133
 0.1149
 0.1338
 0.1574
 0.1732
 0.1222
 0.1317
 0.1651
 0.1592
 0.1255
 0.1714
 0.1386
 0.1274
 0.1710
 0.1602
 0.1427
 0.1191
 0.1423
 0.1244
 0.1242
 0.1345
 0.1228
 0.1578
 0.1384
 0.1870
 0.1142
 0.1692
 0.1325
 0.1416
 0.1499
 0.1259
 0.1202
 0.1246
 0.1744
 0.1611
 0.1277
 0.1228
 0.1276
 0.1105
 0.1708
 0.1367
 0.1220
 0.1172
 0.1324
 0.1184
 0.2493
 0.1403
 0.1269
 0.1254
 0.1589
 0.1228
 0.1548
 0.1620
 0.1270
 0.1219
 0.1219
 0.1449
 0.1133
 0.1800
 0.1959
 0.1330
 0.1314
 0.1067
 0.1207
 0.1086
 0.1430
 0.1113
 0.1375
 0.1652
 0.1293
 0.1261
 0.1513
 0.1269
 0.1334
 0.1213
 0.1117
 0.1366
 0.1399
 0.1310
 0.1452
 0.1476
 0.1330
 0.1173
 0.1508
 0.1389
 0.1231
 0.1381
 0.1656
 0.1119
 0.1386
 0.1126
 0.1373
 0.1122
 0.1230
 0.0956
 0.1402
 0.1565
 0.1408
 0.1206
 0.1396
 0.1236
 0.1630
 0.1353
 0.1303
 0.2084
 0.1242
 0.1122
 0.1314
 0.1330
 0.1390
 0.1695
 0.1342
 0.1609
 0.1675
 0.1445
 0.1422
 0.1566
 0.1629
 0.1685
 0.1337
 0.1291
 0.1315
 0.1648
 0.1187
 0.1312
 0.1344
 0.1582
 0.1085
 0.1148
 0.1341
 0.1757
 0.1398
 0.1169
 0.1368
 0.1972
 0.1132
 0.1293
 0.1359
 0.1159
 0.1204
 0.1141
 0.1512
 0.1578
 0.1483
 0.1096
 0.1363
 0.1530
 0.1410
 0.1818
 0.1212
 0.1304
 0.1415
 0.1201
 0.1561
 0.1149
 0.1250
 0.1123
 0.1161
 0.1466
 0.1419
 0.1714
[torch.FloatTensor of size 512]
), ('layer4.1.conv2.weight', 
( 0 , 0 ,.,.) = 
  2.8729e-04  4.2632e-03 -2.0266e-03
  1.9513e-04  2.4381e-03 -5.8632e-03
  4.4803e-03  8.6577e-03  8.5538e-04

( 0 , 1 ,.,.) = 
 -1.1335e-02 -1.3195e-02 -1.0305e-02
 -4.9507e-03 -4.5898e-03 -3.1041e-03
 -7.5883e-03 -8.3795e-03 -8.9239e-03

( 0 , 2 ,.,.) = 
 -1.1914e-02 -1.2104e-02 -1.0167e-02
 -1.2093e-02 -1.1557e-02 -8.9600e-03
 -1.2515e-02 -9.3296e-03 -6.4079e-03
    ... 

( 0 ,509,.,.) = 
 -9.3573e-03 -1.0662e-02 -1.2672e-02
 -8.0600e-03 -8.5423e-03 -1.2121e-02
 -8.1498e-03 -8.8037e-03 -1.0611e-02

( 0 ,510,.,.) = 
  4.2632e-03  5.6461e-03  2.8460e-03
  4.7070e-03  6.2550e-03  7.5862e-03
  1.1504e-02  1.1518e-02  1.0728e-02

( 0 ,511,.,.) = 
 -6.2455e-03 -9.1693e-03 -9.6664e-03
 -4.2935e-03 -6.5311e-03 -5.0513e-03
 -3.1141e-03 -5.0124e-03 -5.8122e-03
      ⋮  

( 1 , 0 ,.,.) = 
  2.7483e-03  3.7146e-04  3.3262e-05
 -4.5675e-03 -6.6689e-03 -6.4447e-03
 -6.7610e-03 -7.3204e-03 -9.5855e-03

( 1 , 1 ,.,.) = 
 -1.4630e-02 -1.2320e-02 -1.4457e-02
 -8.6197e-03 -5.8059e-03 -1.1075e-02
 -6.2154e-03 -6.8218e-03 -9.3805e-03

( 1 , 2 ,.,.) = 
  1.0879e-03  4.3850e-04 -1.9456e-03
 -1.2517e-03  3.2917e-04 -2.1435e-03
  4.8136e-03  2.5333e-03  5.1504e-03
    ... 

( 1 ,509,.,.) = 
  2.4644e-02  1.7434e-02  2.0734e-02
  2.3101e-02  1.3487e-02  2.0728e-02
  1.9381e-02  1.5243e-02  1.7340e-02

( 1 ,510,.,.) = 
  1.2212e-02  1.2448e-02  1.5048e-02
  5.2993e-03  4.0090e-03  9.3927e-03
  6.6766e-03  2.4941e-03  8.3288e-03

( 1 ,511,.,.) = 
  3.1040e-02  2.8243e-02  3.2319e-02
  3.8608e-02  3.3099e-02  3.8652e-02
  2.5839e-02  2.6524e-02  2.4995e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -2.1761e-03  4.5553e-03  2.0612e-03
  4.9747e-03  1.1420e-02  8.5734e-03
  4.8583e-03  1.1469e-02  1.0039e-02

( 2 , 1 ,.,.) = 
 -6.2547e-05  6.5336e-04  9.4747e-04
  5.0603e-03  7.7136e-03  6.5484e-03
 -4.8432e-04  2.3057e-03  2.9219e-03

( 2 , 2 ,.,.) = 
 -3.2788e-02 -2.7615e-02 -3.2608e-02
 -3.6296e-02 -2.8170e-02 -3.0277e-02
 -3.6814e-02 -3.1547e-02 -3.0231e-02
    ... 

( 2 ,509,.,.) = 
 -5.2998e-03 -2.8590e-04 -4.9266e-03
 -7.0530e-03 -2.3684e-04 -1.5838e-03
 -6.9291e-03  4.8084e-04 -3.1548e-03

( 2 ,510,.,.) = 
  1.1854e-02  8.4836e-03  1.3839e-02
  2.8741e-03 -9.7358e-05  4.4888e-03
 -2.5515e-03 -2.7788e-03 -3.2464e-03

( 2 ,511,.,.) = 
 -1.2408e-02 -1.5001e-02 -1.3377e-02
 -1.4540e-02 -1.8537e-02 -1.7392e-02
 -6.7315e-03 -9.5205e-03 -9.0692e-03
...     
      ⋮  

(509, 0 ,.,.) = 
  3.0369e-03  1.9542e-03  1.7140e-03
 -7.6240e-03 -2.8765e-03 -5.1760e-03
 -9.3019e-03 -4.8800e-03 -4.2932e-03

(509, 1 ,.,.) = 
  4.4836e-03  2.4909e-03  1.5746e-03
  1.2065e-02  1.2936e-02  1.0344e-02
  1.9010e-02  1.7459e-02  1.5988e-02

(509, 2 ,.,.) = 
 -1.4914e-03 -8.1727e-03 -8.0671e-03
 -6.6247e-03 -6.2421e-03 -9.2717e-03
 -8.7991e-03 -7.7528e-03 -8.6336e-03
    ... 

(509,509,.,.) = 
 -1.8040e-02 -1.5366e-02 -1.5334e-02
 -1.3148e-02 -1.2180e-02 -1.0915e-02
 -1.4545e-02 -1.4756e-02 -1.1787e-02

(509,510,.,.) = 
  3.5762e-03  6.6073e-03 -1.4055e-03
  4.3975e-03  7.8375e-03  8.8085e-05
 -5.0697e-03 -5.6633e-04 -5.9284e-03

(509,511,.,.) = 
 -1.9234e-03 -8.8012e-03 -5.8821e-03
  3.6685e-03 -1.3784e-03 -3.2117e-03
 -4.7037e-04  1.5340e-04 -3.4046e-03
      ⋮  

(510, 0 ,.,.) = 
 -1.8305e-02 -1.7735e-02 -2.1683e-02
 -1.6598e-02 -1.2508e-02 -2.0530e-02
 -1.0800e-02 -9.8670e-03 -1.7195e-02

(510, 1 ,.,.) = 
  2.0721e-02  2.2466e-02  2.5049e-02
  1.8682e-02  1.3160e-02  2.3696e-02
  2.2104e-02  1.7261e-02  2.4877e-02

(510, 2 ,.,.) = 
 -5.7091e-03 -2.6876e-03 -9.2260e-04
 -9.4530e-03 -7.0543e-03 -6.2770e-03
 -4.5806e-03 -2.7182e-03 -2.5823e-03
    ... 

(510,509,.,.) = 
  2.4150e-02  1.4002e-02  1.6559e-02
  2.1363e-02  1.4359e-02  1.5854e-02
  2.5786e-02  2.7233e-02  2.5104e-02

(510,510,.,.) = 
 -4.6450e-03  1.2419e-03 -1.8768e-03
  1.3005e-03  4.0888e-03 -6.5483e-04
 -7.9783e-03 -6.6539e-03 -8.9957e-03

(510,511,.,.) = 
  1.1494e-02  2.6621e-02  1.5649e-02
  6.5960e-03  1.7290e-02  7.5466e-03
 -8.0256e-03  4.6246e-03 -5.7808e-03
      ⋮  

(511, 0 ,.,.) = 
  1.4232e-02  1.1769e-02  9.4342e-03
  6.2592e-03  5.1087e-03  2.3311e-03
 -1.9694e-03  2.7110e-03 -2.8945e-03

(511, 1 ,.,.) = 
 -7.0772e-03  1.0365e-03 -5.8451e-03
 -9.1879e-03 -3.1388e-03 -8.1517e-03
 -8.0300e-03 -5.1313e-03 -9.5734e-03

(511, 2 ,.,.) = 
  2.4314e-02  1.8942e-02  2.4256e-02
  2.0090e-02  1.1472e-02  1.5993e-02
  2.2910e-02  2.0622e-02  2.3820e-02
    ... 

(511,509,.,.) = 
 -1.6375e-02 -1.6928e-02 -1.9019e-02
 -9.7367e-03 -1.1274e-02 -1.0261e-02
 -1.2310e-02 -1.5931e-02 -1.4151e-02

(511,510,.,.) = 
  4.7098e-03 -4.5205e-04  2.8042e-03
  2.1428e-03 -4.6175e-03 -1.6818e-03
 -1.3336e-03 -5.5009e-03 -2.6237e-03

(511,511,.,.) = 
 -1.4367e-02 -1.3520e-02 -1.1387e-02
 -4.7420e-03 -1.7309e-03 -2.6426e-03
  5.1448e-03  7.0428e-03  5.0202e-03
[torch.FloatTensor of size 512x512x3x3]
), ('layer4.1.bn2.weight', 
 1.8419
 1.8307
 1.7650
 1.8288
 1.9505
 1.8026
 1.9536
 2.2790
 1.7662
 1.8902
 1.7768
 1.7749
 1.9055
 1.7328
 1.8762
 1.8211
 1.7967
 2.3428
 1.7985
 1.7271
 1.7915
 1.9512
 1.8928
 1.9017
 1.8784
 1.9809
 1.8569
 1.7830
 1.8911
 1.8859
 1.7764
 1.9832
 1.8389
 1.7616
 1.8728
 1.8753
 1.9008
 1.8209
 1.7039
 1.7377
 1.7786
 1.6944
 1.7829
 1.7815
 1.7594
 1.8428
 1.9238
 2.0871
 1.8980
 1.8413
 1.8471
 1.8584
 1.7640
 1.8453
 1.7606
 1.9504
 1.9620
 1.8755
 1.9424
 1.8731
 1.8674
 1.9422
 1.8750
 1.9208
 1.7464
 1.8558
 1.6539
 2.0660
 2.0298
 1.9174
 1.8972
 1.7589
 1.7551
 1.9560
 1.7909
 1.7971
 1.7851
 1.7733
 1.8061
 1.7949
 1.8169
 1.8089
 1.8641
 2.1542
 1.7739
 1.7913
 1.8022
 1.7155
 1.7679
 1.7704
 1.6266
 1.8645
 1.9076
 1.8576
 1.6924
 1.8020
 1.7100
 1.7713
 1.8572
 1.7103
 2.0664
 1.9054
 1.9422
 1.8078
 1.7412
 1.6061
 1.9105
 1.8947
 1.7954
 1.8989
 1.8239
 1.7619
 1.7951
 1.8149
 1.8539
 1.8502
 1.7095
 2.1831
 1.8599
 1.8252
 1.8193
 1.8460
 1.7968
 1.6229
 1.8450
 1.8290
 1.8706
 1.9293
 1.6881
 1.9725
 1.8981
 1.8925
 1.8851
 1.8445
 1.9764
 2.0674
 1.8384
 1.8414
 1.8762
 1.7931
 1.7131
 1.9644
 1.7854
 1.9369
 1.8972
 1.8940
 1.8700
 1.7967
 1.8775
 1.9409
 1.7391
 1.7944
 1.9678
 1.7678
 1.6851
 1.9414
 1.9663
 1.9882
 1.7915
 1.8141
 1.8325
 2.1200
 1.9256
 2.3592
 2.0304
 1.9594
 1.7334
 1.9048
 1.8221
 1.7811
 1.9084
 1.8053
 1.9171
 1.9644
 1.8256
 1.6432
 1.9173
 1.9094
 1.9923
 1.7963
 1.9077
 1.7619
 2.1724
 1.7931
 1.7564
 1.8889
 1.9832
 1.9136
 1.8035
 1.8419
 1.8278
 1.8057
 1.9063
 1.8646
 1.7848
 1.8230
 1.7986
 1.7091
 1.7724
 1.7939
 1.7611
 1.9325
 2.0162
 1.7295
 2.0196
 1.8876
 1.8325
 1.8225
 1.7870
 1.9160
 1.7197
 1.7170
 1.9133
 1.7770
 1.9943
 1.8389
 1.8070
 1.8516
 1.7857
 1.9648
 1.9553
 1.9232
 1.8086
 1.8114
 1.7141
 1.8058
 1.8532
 1.9255
 1.7682
 1.8314
 1.8495
 1.8296
 1.8278
 1.8819
 1.7698
 1.7838
 1.7807
 1.9974
 1.6994
 1.9483
 1.7793
 1.8029
 2.2210
 1.6455
 1.8357
 2.1706
 1.9204
 1.7414
 1.7809
 1.8648
 1.9145
 1.8849
 1.8346
 1.9368
 1.8169
 2.2302
 1.8262
 2.0651
 1.9888
 1.8169
 1.8462
 1.9681
 1.8083
 1.8595
 1.8539
 1.7699
 1.9001
 1.7285
 1.7553
 1.8924
 1.7829
 1.9428
 1.8724
 1.7228
 2.0548
 1.7732
 1.8561
 1.7699
 1.9269
 1.8171
 2.4075
 1.7257
 1.7819
 1.7244
 1.8521
 1.8302
 1.8797
 1.7617
 1.9650
 1.9807
 1.7102
 1.7486
 1.8350
 1.9919
 1.8505
 1.9000
 1.8269
 1.9787
 1.7635
 1.6071
 1.7998
 1.9545
 1.7348
 1.7140
 1.8851
 1.7981
 1.9100
 1.8315
 1.7864
 1.9165
 1.8839
 1.9017
 1.9334
 1.7405
 1.7661
 1.8015
 1.9987
 1.7622
 1.9107
 1.8444
 1.7128
 1.8726
 1.8529
 1.9270
 1.8769
 1.7261
 1.8393
 1.9075
 1.7953
 1.8246
 1.7605
 2.0470
 1.9221
 1.9205
 1.8910
 1.7666
 1.6801
 1.8308
 1.8845
 1.8339
 1.8238
 1.7616
 1.6114
 1.8411
 1.7437
 1.8423
 1.9540
 1.7465
 1.7741
 1.8746
 1.8856
 1.7740
 1.7603
 1.7682
 1.8396
 1.6869
 1.8080
 1.8836
 1.8283
 1.8341
 1.8522
 1.9749
 1.8707
 1.7719
 1.8993
 1.8108
 1.8480
 1.8267
 1.8731
 1.9576
 1.8347
 1.9509
 1.9641
 1.7997
 1.7652
 1.9253
 1.7126
 1.7551
 1.9427
 1.8559
 1.9163
 1.7681
 1.7803
 1.8500
 1.8535
 1.8865
 1.7599
 2.0692
 1.8021
 1.7077
 1.8890
 1.9457
 1.8516
 1.7882
 1.8356
 1.8472
 1.6708
 1.7435
 1.9080
 1.9653
 2.0401
 1.8935
 1.8450
 1.7536
 1.7733
 1.8135
 1.8534
 1.9368
 1.7348
 1.8738
 1.9632
 1.9033
 1.7422
 1.7842
 1.8516
 2.0218
 1.7044
 1.8793
 1.8655
 1.8516
 1.8002
 1.8687
 1.8460
 1.7589
 1.8174
 1.9830
 1.9034
 2.1222
 1.8460
 1.9209
 1.8893
 1.9422
 1.8489
 1.8396
 1.9953
 2.0865
 1.8253
 1.7700
 1.8035
 1.7535
 1.8923
 1.8620
 1.8627
 1.7264
 1.8140
 1.9613
 1.8812
 1.8729
 2.0050
 1.7092
 1.7726
 1.9410
 1.8381
 1.8366
 1.7276
 1.8796
 1.7548
 1.9536
 1.8062
 1.8883
 2.0278
 1.8775
 1.9446
 1.8676
 1.8423
 1.7798
 1.9403
 1.8375
 2.0473
 1.9507
 1.8337
 1.8184
 1.7791
 1.8993
 1.8781
 1.8691
 1.8493
 1.7623
 1.9458
 1.7564
 1.7448
 1.8633
 1.6863
 1.8062
 1.8702
 2.0048
 1.8504
 1.8964
 1.9489
 1.8264
 1.9019
 1.8196
 1.9712
 1.8969
 1.8652
 1.8709
 1.6984
 1.8677
 1.8846
 1.9256
 1.8620
 1.6366
 1.8434
 1.7506
 1.8438
 1.5788
 1.9316
 1.9535
 1.7878
 1.7354
 2.0920
 1.9456
[torch.FloatTensor of size 512]
), ('layer4.1.bn2.bias', 
 0.2371
 0.3433
 0.3279
 0.4642
 0.2233
 0.2370
 0.2176
 0.3793
 0.3140
 0.2803
 0.2434
 0.2116
 0.2478
 0.2435
 0.2298
 0.3172
 0.2725
 0.6511
 0.2925
 0.2281
 0.2279
 0.4254
 0.2342
 0.3328
 0.2632
 0.2176
 0.3180
 0.3893
 0.1387
 0.2274
 0.3379
 0.0767
 0.2253
 0.2504
 0.1990
 0.1951
 0.2566
 0.3253
 0.2797
 0.3149
 0.2373
 0.2533
 0.1956
 0.3236
 0.2093
 0.2333
 0.2300
 0.5019
 0.2830
 0.1885
 0.3264
 0.2722
 0.2369
 0.2430
 0.3625
 0.2165
 0.4700
 0.3047
 0.3675
 0.2641
 0.1979
 0.2664
 0.3448
 0.2005
 0.2450
 0.4351
 0.2689
 0.1632
 0.3087
 0.1209
 0.2153
 0.1592
 0.2960
 0.1423
 0.2951
 0.2706
 0.2007
 0.2939
 0.2210
 0.2243
 0.2465
 0.3910
 0.4599
 0.5417
 0.2147
 0.3469
 0.2703
 0.2229
 0.3645
 0.2647
 0.2421
 0.2492
 0.1666
 0.2763
 0.2560
 0.2151
 0.3363
 0.2767
 0.2516
 0.2988
 0.2622
 0.3499
 0.3001
 0.3907
 0.3184
 0.2233
 0.2649
 0.2110
 0.2034
 0.2752
 0.2314
 0.3480
 0.2238
 0.2892
 0.1991
 0.2923
 0.3259
 0.0722
 0.3039
 0.3041
 0.3803
 0.2568
 0.2382
 0.3057
 0.2652
 0.1532
 0.2110
 0.2567
 0.3148
 0.2746
 0.1833
 0.1950
 0.1116
 0.2279
 0.3705
 0.2477
 0.2000
 0.3060
 0.2548
 0.2468
 0.3028
 0.1921
 0.2952
 0.1980
 0.2135
 0.1583
 0.1586
 0.3944
 0.2352
 0.3947
 0.2740
 0.2861
 0.1856
 0.2702
 0.2986
 0.1728
 0.2658
 0.2696
 0.2028
 0.1838
 0.3176
 0.6246
 0.2631
 0.3855
 0.2074
 0.2317
 0.4171
 0.2044
 0.2926
 0.3506
 0.2305
 0.2400
 0.1420
 0.1093
 0.2757
 0.3253
 0.2334
 0.1650
 0.4026
 0.2066
 0.1790
 0.3032
 0.5658
 0.3246
 0.3834
 0.3254
 0.1772
 0.2909
 0.2350
 0.2519
 0.1968
 0.2003
 0.3213
 0.4802
 0.2543
 0.2578
 0.3280
 0.2270
 0.3044
 0.2273
 0.2447
 0.2527
 0.4136
 0.2588
 0.3589
 0.2688
 0.2115
 0.2022
 0.3186
 0.3740
 0.1785
 0.2074
 0.2346
 0.3566
 0.2623
 0.2620
 0.2880
 0.1462
 0.1896
 0.2777
 0.1852
 0.3240
 0.2748
 0.2164
 0.3066
 0.1845
 0.3992
 0.1695
 0.4411
 0.2812
 0.2730
 0.2784
 0.1861
 0.3589
 0.1934
 0.3320
 0.3350
 0.2655
 0.2740
 0.3185
 0.2633
 0.2458
 0.2003
 0.2809
 0.3049
 0.2050
 0.2904
 0.2381
 0.3278
 0.3484
 0.4293
 0.2422
 0.2859
 0.1864
 0.2954
 0.5634
 0.2081
 0.3743
 0.2902
 0.3820
 0.3069
 0.2101
 0.2750
 0.2878
 0.1870
 0.3015
 0.1661
 0.2998
 0.3101
 0.2522
 0.2419
 0.1758
 0.2681
 0.2812
 0.1495
 0.2868
 0.3157
 0.2587
 0.2437
 0.1467
 0.5416
 0.2490
 0.2831
 0.2783
 0.1614
 0.1963
 0.2034
 0.2364
 0.2527
 0.1573
 0.3184
 0.2841
 0.1613
 0.1489
 0.2850
 0.1625
 0.3277
 0.4936
 0.2780
 0.3178
 0.1743
 0.2158
 0.2222
 0.2821
 0.4267
 0.2713
 0.1778
 0.3067
 0.2270
 0.1772
 0.3897
 0.2923
 0.4843
 0.2345
 0.2327
 0.2740
 0.2700
 0.2804
 0.4035
 0.1501
 0.3329
 0.3286
 0.2803
 0.2309
 0.1738
 0.3270
 0.3097
 0.1808
 0.2384
 0.2107
 0.3240
 0.3346
 0.2236
 0.2061
 0.2687
 0.2360
 0.3338
 0.2694
 0.3203
 0.2895
 0.1884
 0.1491
 0.3957
 0.5167
 0.3407
 0.1854
 0.1816
 0.2626
 0.1855
 0.2219
 0.1482
 0.2584
 0.2458
 0.2616
 0.2396
 0.2402
 0.2423
 0.3463
 0.2731
 0.1524
 0.2514
 0.2760
 0.1734
 0.2715
 0.4052
 0.2252
 0.3676
 0.3070
 0.3127
 0.1836
 0.4330
 0.2203
 0.2073
 0.2803
 0.2984
 0.2191
 0.3272
 0.2267
 0.2749
 0.3056
 0.4566
 0.2962
 0.3528
 0.3236
 0.4220
 0.2715
 0.2256
 0.2903
 0.1829
 0.3994
 0.2820
 0.2471
 0.1647
 0.3654
 0.4504
 0.2685
 0.2992
 0.2825
 0.2435
 0.2212
 0.4300
 0.4342
 0.1988
 0.2863
 0.3398
 0.2444
 0.2905
 0.2559
 0.2586
 0.1702
 0.1906
 0.2536
 0.2978
 0.2498
 0.3777
 0.2252
 0.2472
 0.2243
 0.1732
 0.2194
 0.2091
 0.2820
 0.2898
 0.2887
 0.3292
 0.1644
 0.2962
 0.3279
 0.2535
 0.2795
 0.2238
 0.2607
 0.1937
 0.2680
 0.2418
 0.5193
 0.2502
 0.3147
 0.2166
 0.2313
 0.2027
 0.1880
 0.2180
 0.3826
 0.3871
 0.2358
 0.3556
 0.2272
 0.3272
 0.3442
 0.3154
 0.1993
 0.3135
 0.2254
 0.3048
 0.2658
 0.3337
 0.2679
 0.2670
 0.2363
 0.4347
 0.1931
 0.1995
 0.2072
 0.3202
 0.2667
 0.2305
 0.2383
 0.2246
 0.2562
 0.2837
 0.4046
 0.2786
 0.2243
 0.1591
 0.1923
 0.1894
 0.2496
 0.1140
 0.3128
 0.3197
 0.3530
 0.2999
 0.2115
 0.4718
 0.2979
 0.3472
 0.2890
 0.4740
 0.2230
 0.3630
 0.4015
 0.2446
 0.1897
 0.1460
 0.1874
 0.2734
 0.2366
 0.3001
 0.2359
 0.2688
 0.3256
 0.2749
 0.2848
 0.2299
 0.3001
 0.4818
 0.3074
 0.3164
 0.3114
 0.3549
 0.2859
[torch.FloatTensor of size 512]
), ('layer4.1.bn2.running_mean', 
1.00000e-02 *
 -1.3953
 -5.0031
 -4.3323
 -1.5914
 -4.6112
 -2.3473
 -2.5429
 -3.3783
  5.1665
 -3.5325
 -3.7555
 -1.3353
 -3.4012
 -0.2871
 -4.3814
 -2.6424
 -3.0987
 -9.1183
  1.5193
 -3.9889
  0.3516
 -6.3124
 -2.8069
 -3.8168
 -0.5747
 -1.9639
 -2.0180
 -4.1006
 -3.7068
 -4.9702
 -2.0847
 -3.5155
 -2.2799
 -3.5089
 -2.5835
 -2.6871
 -3.3089
 -5.3280
 -2.9554
 -2.7207
 -7.9410
 -3.8662
 -7.0901
 -0.4792
 -4.0081
 -4.4518
 -0.9688
  3.9220
 -4.1579
 -3.5060
 -2.7755
 -0.7651
 -4.4367
 -2.6813
 -1.2360
 -3.5112
 -3.1672
 -2.4467
 -6.0395
 -4.6648
 -5.3290
 -2.8216
 -5.4557
 -5.4704
 -2.8591
 -5.0634
  0.0627
 -5.1950
 -5.1578
 -3.6758
 -3.0772
 -3.9569
 -1.9722
 -4.3900
 -4.4507
 -5.3416
 -4.3945
 -2.3374
 -5.1497
 -4.4268
 -3.9613
  0.7135
 -3.1644
  3.4458
 -3.8945
 -3.8628
 -2.9412
 -3.6697
 -3.3454
 -0.3520
 -2.3919
 -1.5737
 -1.8832
 -3.6160
 -3.0676
 -3.5423
 -3.6338
 -6.0085
 -2.4744
 -1.0668
 -6.4177
 -4.9577
 -5.2484
 -5.4054
 -0.5603
 -1.1281
 -5.2175
 -4.2486
 -2.8311
 -3.6422
 -0.5653
 -2.8168
 -2.9531
 -3.7204
 -6.7556
 -3.1953
 -4.5689
  4.5595
 -3.0731
 -2.3350
 -3.2033
 -1.5946
 -4.3791
  0.4781
  0.0364
 -3.1503
 -2.3126
 -3.7362
 -4.6890
 -2.7394
 -5.6134
 -4.9824
 -4.3524
 -2.7824
 -7.0928
 -6.0755
 -5.0579
 -2.8704
 -2.6274
 -3.3160
 -0.8618
 -3.9907
 -3.5256
 -8.6042
 -2.6312
 -3.2020
 -1.4972
 -1.1586
 -3.8802
 -6.7321
 -4.5730
 -1.3368
 -2.9202
 -1.5672
 -5.5057
 -4.7705
 -2.6542
 -1.3914
 -1.9433
 -3.6511
 -5.1134
 -4.3920
 -3.3364
  4.1027
 -3.2706
 -0.0820
 -1.9290
 -4.7500
 -4.4132
 -3.8169
 -2.4048
 -4.1317
 -2.0381
 -3.9825
 -4.3505
 -1.3664
 -3.0153
 -3.2162
 -5.1351
 -4.3963
 -0.1310
 -2.0620
 -4.1151
 -7.4645
 -1.3569
 -4.2029
 -3.6559
 -5.5496
 -2.4927
 -4.3322
 -2.5386
 -0.5925
  0.9121
 -4.6321
 -4.9662
 -1.3392
 -4.9198
 -2.2978
 -1.3565
 -4.4778
 -4.1518
 -5.3186
 -6.2418
 -3.3953
 -1.8224
 -4.7834
 -2.5541
 -1.6724
 -6.6561
 -5.5189
 -2.9102
  0.1744
 -2.8708
 -4.7356
 -3.9403
 -5.2492
 -4.8850
 -3.3341
 -2.7483
 -6.1212
 -4.5193
 -3.5821
  0.8330
 -1.7342
  0.1103
 -6.2373
 -2.4603
 -7.2638
  2.1412
 -7.5782
 -3.2325
 -2.4850
 -2.2635
 -0.8499
 -2.4250
  0.6696
 -1.6815
 -5.7800
 -4.0070
 -2.5381
 -2.6095
 -3.6127
 -4.1404
 -4.7404
 -0.1727
 -5.8207
 -6.2922
 -4.1185
 -2.7714
 -2.6942
 -1.9350
 -0.2645
 -4.6726
 -4.4284
 -2.1652
 -4.8506
 -4.0399
 -3.5572
 -4.6054
 -3.1532
 -3.2670
 -4.3606
 -5.3407
 -2.9613
 -6.5983
 -3.6677
 -1.5673
 -4.1916
  0.7200
 -2.6574
 -2.9427
 -4.6752
 -1.6942
 -1.7730
 -3.1830
 -2.0861
 -4.2271
 -3.7406
 -3.8363
 -4.3299
  0.7099
 -1.6024
 -1.1558
 -1.3649
 -1.9286
 -0.5381
 -3.8080
 -4.0525
 -3.7919
 -3.8805
 -7.5134
 -1.3963
  0.2917
 -1.8857
 -1.8787
 -1.8889
 -3.9999
 -4.7723
 -1.5847
 -3.8556
 -0.3824
 -4.1886
 -2.2822
 -2.7051
 -1.2578
 -1.2243
 -1.0389
 -3.0908
 -4.9441
 -5.7127
 -4.3721
 -2.9496
 -2.8846
 -3.4347
 -3.3969
 -1.8485
 -2.0259
 -0.6510
 -3.2701
 -1.2320
 -4.2393
 -4.4799
 -2.5397
 -3.7255
 -3.0126
 -3.3043
  1.1193
 -3.4983
 -3.1577
 -3.6480
 -1.0290
  2.8495
 -3.6363
 -0.4754
 -5.7458
 -1.7357
 -0.9672
 -2.6240
 -3.2853
 -0.1027
 -5.6348
 -1.9716
 -6.3584
  1.1124
 -2.9937
 -2.5287
 -3.9320
  0.2933
 -4.8010
 -3.1270
 -3.5449
 -2.9562
 -1.7369
 -5.0306
 -4.5947
 -1.7834
 -0.6932
 -0.3274
 -4.8955
 -3.5086
 -2.4075
 -2.1984
 -0.7037
 -3.7546
 -3.1797
 -2.4134
 -3.3352
 -3.2565
 -1.6909
 -2.2290
 -3.9201
 -1.0906
 -5.6042
 -4.8766
 -3.0840
 -3.4916
 -3.8825
 -4.3324
 -5.6847
  1.0243
 -4.6514
 -1.0452
 -0.2154
 -4.4856
 -3.6066
 -1.7105
 -0.5236
 -2.8570
 -5.0284
 -6.5926
 -1.6846
 -3.1785
 -6.2677
 -5.5734
 -3.5885
 -1.4798
 -4.3455
 -1.3114
 -3.5012
 -2.1125
 -7.3286
 -4.1934
 -1.7432
 -3.5229
  3.5735
 -3.0858
 -4.1892
 -3.5874
  0.1710
 -1.8882
 -3.2570
 -6.8433
 -0.2356
 -4.5632
  0.1103
 -7.9181
 -1.5563
 -2.2546
 -1.9013
 -4.7557
 -1.5476
 -4.5174
 -2.5230
 -3.1111
 -1.7632
 -1.1193
 -1.6986
 -6.3783
 -2.5520
  0.9365
 -2.4927
 -5.2760
 -6.2665
 -2.4147
 -5.4109
 -6.4714
 -1.9359
 -1.4110
 -4.5960
 -4.2290
 -2.9651
 -1.1331
 -4.9568
 -4.5198
 -4.6655
 -3.9152
 -7.2373
 -2.8233
 -3.3341
  0.0050
 -2.4896
 -0.4391
 -5.7027
 -1.6781
 -4.1684
 -4.3151
 -1.1696
 -3.2351
 -0.9796
 -1.0248
 -3.1722
 -3.1369
 -4.3368
 -4.1376
 -1.7700
 -6.5839
 -4.4930
 -3.0312
 -4.9151
 -3.4421
 -2.9603
 -2.7210
 -2.1330
 -3.6309
 -2.3335
 -4.0678
 -1.2841
 -3.0524
 -6.1549
 -4.6466
 -6.2686
 -3.6889
 -3.9056
 -3.4740
 -0.6074
 -1.9422
 -4.2960
 -3.7847
 -7.7137
 -2.9199
 -5.4336
 -2.5864
 -3.2088
 -5.0267
 -2.6562
 -1.9347
 -1.2865
 -3.7129
 -3.3561
 -5.6942
 -2.3849
 -0.7705
 -5.8456
  0.0136
 -6.6229
 -2.9168
 -0.3950
 -5.2685
 -1.9541
 -5.8807
 -4.5790
 -3.0423
[torch.FloatTensor of size 512]
), ('layer4.1.bn2.running_var', 
1.00000e-02 *
  1.2607
  1.2795
  1.2836
  1.3783
  1.2441
  1.3147
  1.4444
  1.6157
  1.2308
  1.1641
  1.1995
  1.1215
  1.2360
  1.0052
  1.2017
  1.3942
  1.3127
  1.8412
  1.2599
  1.0842
  1.2449
  1.3412
  1.3765
  1.3621
  1.2877
  1.2920
  1.2716
  1.2023
  1.4954
  1.2628
  1.2342
  1.2743
  1.2353
  1.1137
  1.2544
  1.2324
  1.4762
  1.2765
  1.1890
  1.0633
  1.2721
  1.0859
  1.2173
  1.2396
  1.3669
  1.2910
  1.2683
  2.0786
  1.2164
  1.1582
  1.2351
  1.3041
  1.0677
  1.5028
  1.1270
  1.2414
  1.5545
  1.4291
  1.3015
  1.1886
  1.1764
  1.7043
  1.1810
  1.4155
  1.1373
  1.2751
  1.0263
  1.3853
  1.5373
  1.2052
  1.3857
  1.1107
  1.1257
  1.3424
  1.1654
  1.3275
  1.2267
  1.1632
  1.1624
  1.1821
  1.1366
  1.4051
  1.1627
  1.5670
  1.0272
  1.2229
  1.3182
  1.1980
  1.1770
  1.1470
  0.9519
  1.3395
  1.2046
  1.3805
  1.1765
  1.2712
  1.1828
  1.1465
  1.2209
  1.1313
  1.2856
  1.2779
  1.2912
  1.2170
  1.1401
  1.1912
  1.4428
  1.4182
  1.3258
  1.5467
  1.1182
  1.1008
  1.1993
  1.3008
  1.3681
  1.3370
  1.1496
  1.6639
  1.1855
  1.2463
  1.2111
  1.3034
  1.2276
  0.9981
  1.2321
  1.1815
  1.2773
  1.1727
  1.1281
  1.3318
  1.4112
  1.2649
  1.0986
  1.2151
  1.5177
  1.3746
  1.2133
  1.3573
  1.2481
  1.3561
  1.0291
  1.2488
  1.1282
  1.2459
  1.3162
  1.3991
  1.2794
  1.5236
  1.1475
  1.4152
  1.1746
  1.1560
  1.4177
  1.1815
  1.0985
  1.4292
  1.3252
  1.3664
  1.2592
  1.1000
  1.2848
  2.0357
  1.2684
  3.0875
  1.6966
  1.3806
  1.0805
  1.1598
  1.2627
  1.2273
  1.2620
  1.1659
  1.2492
  1.2681
  1.2751
  1.0844
  1.4885
  1.3681
  1.2171
  1.1670
  1.3635
  1.1769
  1.8156
  1.1138
  1.2628
  1.5029
  1.5616
  1.3909
  1.1480
  1.1303
  1.2139
  1.1750
  1.5876
  1.3656
  1.0394
  1.2946
  1.2624
  1.1957
  1.3235
  1.1265
  1.1500
  1.2635
  1.5489
  0.9593
  1.4590
  1.4663
  1.3447
  1.2776
  1.2686
  1.2837
  1.0899
  1.0744
  1.1642
  1.1800
  1.4411
  1.2817
  1.1857
  1.1787
  1.0723
  1.4497
  1.3106
  1.3415
  1.3301
  1.2676
  1.1392
  1.2345
  1.2399
  1.2312
  1.3118
  1.1824
  1.2197
  1.2423
  1.2812
  1.3887
  1.1381
  1.1887
  1.0703
  1.5483
  1.2125
  1.2822
  1.1870
  1.2034
  1.7866
  1.0217
  1.2893
  1.4659
  1.2393
  1.1389
  1.1972
  1.2732
  1.3072
  1.2994
  1.2904
  1.2871
  1.1562
  1.4855
  1.2064
  1.4229
  1.2749
  1.5885
  1.3019
  1.2125
  1.2583
  1.1958
  1.3250
  1.0867
  1.3941
  1.0751
  1.2574
  1.2344
  1.0800
  1.1533
  1.3274
  1.1349
  1.4498
  1.2250
  1.2234
  0.9903
  1.1828
  1.2083
  1.5951
  1.0767
  1.1830
  1.3225
  1.1655
  1.1856
  1.2551
  1.1889
  1.2027
  1.3007
  1.1249
  1.2834
  1.3066
  1.4390
  1.3390
  1.1616
  1.3649
  1.3628
  1.2689
  0.9673
  1.3976
  1.2583
  1.1835
  1.2000
  1.4709
  1.3959
  1.2518
  1.3496
  1.2184
  1.4348
  1.2852
  1.2958
  1.3992
  1.1663
  1.0442
  1.1392
  1.3530
  1.2199
  1.3925
  1.2103
  1.0940
  1.2331
  1.4481
  1.2432
  1.1955
  1.1361
  1.3141
  1.3357
  1.0638
  1.1367
  1.1926
  1.5863
  1.3304
  1.2212
  1.3405
  1.1748
  1.0780
  1.1570
  1.3548
  1.3191
  1.1238
  1.1355
  1.1769
  1.4076
  1.0655
  1.1557
  1.2413
  1.1456
  1.1505
  1.2523
  1.1101
  1.1558
  1.1428
  1.0822
  1.1301
  1.1807
  1.2160
  1.2464
  1.1496
  1.2547
  1.4902
  1.4602
  1.2770
  1.2263
  1.4406
  1.2328
  1.1850
  1.2651
  1.3965
  1.4678
  1.2244
  1.2105
  1.2584
  1.1940
  1.0827
  1.3151
  1.1509
  1.1410
  1.3750
  1.2897
  1.4835
  1.2276
  1.1962
  1.2476
  1.3449
  1.3318
  1.2557
  1.6294
  1.2615
  1.1391
  1.0025
  1.3623
  1.2699
  1.1068
  1.3502
  1.2616
  1.1090
  1.2450
  1.3262
  1.2724
  1.6779
  1.3447
  1.1733
  1.2772
  1.3858
  1.2996
  1.3405
  1.2329
  1.2411
  1.2495
  1.3410
  1.1526
  1.1101
  1.1719
  1.2455
  1.3591
  1.0963
  1.2343
  1.1039
  1.2518
  1.1693
  1.1699
  1.3526
  1.2257
  1.2567
  1.4976
  1.2528
  1.3554
  1.1318
  1.2526
  1.2288
  1.3581
  1.1964
  1.2445
  1.4404
  1.6388
  1.2757
  1.2317
  1.1435
  1.1726
  1.3039
  1.2119
  1.3858
  1.1201
  1.2956
  1.2951
  1.2869
  1.2629
  1.6022
  1.1351
  1.1411
  1.4286
  1.2237
  1.2991
  1.2031
  1.1916
  1.0642
  1.3661
  1.3933
  1.2715
  1.4832
  1.1984
  1.2630
  1.1473
  1.3745
  1.1393
  1.1939
  1.3160
  1.3901
  1.2581
  1.1313
  1.0755
  1.1584
  1.2514
  1.2153
  1.3047
  1.1249
  1.1903
  1.2367
  1.1338
  1.2559
  1.1869
  1.2105
  1.0223
  1.5068
  1.3862
  1.0991
  1.2486
  1.2651
  1.0860
  1.3252
  1.5014
  1.2576
  1.2565
  1.2202
  1.4279
  1.0337
  1.3899
  1.3158
  1.2282
  1.4694
  1.0891
  1.4762
  1.0859
  1.0720
  1.1243
  1.5002
  1.2772
  1.1317
  1.2571
  1.6188
  1.3516
[torch.FloatTensor of size 512]
), ('fc.weight', 
-1.8474e-02 -7.0461e-02 -5.1772e-02  ...  -3.9030e-02  1.7351e-01 -4.0976e-02
-8.1792e-02 -9.4370e-02  1.7355e-02  ...   2.0284e-01 -2.4782e-02  3.7172e-02
-3.3164e-02 -5.6569e-02 -2.4165e-02  ...  -3.4402e-02 -2.2659e-02  1.9705e-02
                ...                   ⋱                   ...                
-1.0300e-02  3.2804e-03 -3.5863e-02  ...  -2.7923e-02 -1.1458e-02  1.2759e-02
-3.5879e-02 -3.5296e-02 -2.9602e-02  ...  -3.2961e-02 -1.1022e-02 -5.1256e-02
 2.1277e-03 -2.4839e-02 -8.2920e-02  ...   4.1731e-02 -5.0030e-02  6.6327e-02
[torch.FloatTensor of size 1000x512]
), ('fc.bias', 
1.00000e-02 *
 -0.2634
  0.3000
  0.0656
    ⋮   
 -1.7868
 -0.0782
 -0.6345
[torch.FloatTensor of size 1000]
)])

In [ ]:
"""
    Test image folder training datasets

    https://discuss.pytorch.org/t/questions-about-dataloader-and-dataset/806
    https://github.com/pytorch/examples/blob/master/imagenet/main.py

"""

In [ ]:
"""
    Test: load partial state dict
"""
model = G_model(BasicBlock, [2, 2, 2, 2])
pretrained_dict =  pretrained_resnet18.state_dict()
model_dict = model.state_dict()

# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict) 

# print model_dict
# 3. load the new state dict
model.load_state_dict(model_dict)
# print model.state_dict()

# x = model.layer1[0].relu
# mynet = myNet(model)

# print mynet.conv1.weight
# print mynet.conv1.bias

In [125]:
loaded = torch.load('/Users/albertxavier/.torch/models/resnet18-5c106cde.pth')

del loaded[u'conv1.weight']
print loaded
mynet.load_state_dict(loaded)

print "after..............."
print mynet.conv1.weight
# print mynet.conv1.bias


OrderedDict([(u'bn1.running_mean', 
 2.7681e-03
-2.5769e-02
 2.1254e-07
-8.4605e-02
 2.1121e-08
 4.9691e-04
-2.2408e-02
-1.1582e-07
-4.8239e-03
 2.7507e-07
 3.9582e-02
 3.1994e-02
-3.7490e-02
-1.3716e-06
 6.6002e-03
 4.3782e-03
 6.4797e-02
 1.1176e-01
 3.6002e-02
-7.5075e-02
-3.8240e-02
 8.4358e-02
-5.2287e-02
-1.1799e-02
 1.3019e-03
 3.2172e-02
-1.7784e-02
-9.1009e-02
 1.1319e-01
-4.1632e-02
 8.7302e-03
 2.9693e-02
-7.0502e-02
-3.4847e-03
 1.0977e-01
-1.7341e-03
-5.9423e-08
 2.9330e-02
-7.8553e-09
 6.7320e-03
-3.7100e-03
 1.6028e-02
-2.7883e-02
 2.6593e-02
 2.8475e-02
-1.2735e-01
 4.4617e-02
 2.6329e-02
 2.1454e-08
-1.7045e-02
-3.5617e-03
-4.5841e-02
 6.3876e-02
 1.5220e-02
-3.8511e-02
-1.6428e-02
-1.6569e-02
 5.6057e-02
-8.0306e-02
-2.6646e-03
-4.1718e-02
 1.2611e-01
-4.9237e-02
-1.3261e-02
[torch.FloatTensor of size 64]
), (u'bn1.running_var', 
 1.0169e+00
 3.7167e+00
 5.8133e-11
 3.2825e+00
 1.7107e-13
 6.5823e-01
 4.3701e+00
 6.6005e-12
 9.1552e-01
 1.9318e-09
 4.1256e+00
 2.7440e+00
 2.8391e+00
 4.7966e-08
 1.1072e+01
 5.0075e-01
 2.2313e+00
 4.8257e+00
 2.6986e+00
 9.3700e+00
 3.7339e+00
 5.4843e+00
 5.7127e+00
 4.4544e-01
 4.3628e-01
 7.1563e+00
 1.3718e+01
 5.2512e+00
 6.8174e+00
 1.6724e+00
 1.6534e+00
 1.2325e+00
 4.9076e+00
 3.0731e+00
 4.2384e+00
 4.9936e+00
 1.4465e-12
 1.5212e+00
 1.0352e-13
 3.5134e-01
 1.7025e-01
 1.4205e+00
 1.9085e+00
 2.1512e+00
 2.6608e+00
 4.8444e+00
 1.9297e+00
 1.4999e+00
 2.9481e-13
 1.5306e+00
 3.6503e-01
 2.9376e+00
 5.4664e+00
 7.0792e-01
 3.3315e+00
 7.7180e-01
 2.4068e+00
 6.5214e+00
 4.1263e+00
 1.0506e+00
 2.9530e+00
 1.1366e+01
 4.7690e+00
 1.6559e+00
[torch.FloatTensor of size 64]
), (u'bn1.weight', Parameter containing:
 2.3487e-01
 2.6626e-01
-5.1096e-08
 5.1870e-01
 3.4404e-09
 2.2239e-01
 4.2289e-01
 1.3153e-07
 2.5093e-01
 1.5152e-06
 3.1687e-01
 2.5049e-01
 3.7893e-01
 1.0862e-05
 2.7526e-01
 2.3674e-01
 2.4202e-01
 3.9531e-01
 4.6935e-01
 2.9090e-01
 2.7268e-01
 2.7803e-01
 2.9069e-01
 2.0693e-01
 2.5899e-01
 2.7871e-01
 2.9115e-01
 3.1601e-01
 3.8889e-01
 3.0411e-01
 2.6776e-01
 2.1093e-01
 2.8708e-01
 3.3243e-01
 4.2673e-01
 3.7326e-01
 7.4804e-08
 1.9068e-01
 1.4740e-08
 2.2303e-01
 1.7908e-01
 2.4860e-01
 2.7400e-01
 2.5923e-01
 2.9420e-01
 2.9924e-01
 2.2369e-01
 2.6280e-01
 2.2001e-08
 2.6610e-01
 2.2089e-01
 2.8429e-01
 3.3072e-01
 2.2681e-01
 3.6538e-01
 2.1230e-01
 2.3965e-01
 2.4950e-01
 5.2583e-01
 2.4825e-01
 2.9565e-01
 2.5878e-01
 4.8326e-01
 2.6670e-01
[torch.FloatTensor of size 64]
), (u'bn1.bias', Parameter containing:
 2.3072e-01
 2.5382e-01
-1.0543e-06
-6.6439e-01
-1.6571e-08
 1.6152e-01
 4.5450e-01
-4.3020e-07
 3.0051e-01
-8.0052e-06
 3.4942e-01
 3.1148e-01
-2.4953e-01
-3.4749e-05
 1.0773e-01
 2.1897e-01
 3.8141e-01
-5.2988e-01
-6.2864e-01
 5.7140e-01
 2.9985e-01
 5.8430e-01
 4.8202e-01
 3.2853e-01
 1.9672e-01
 1.9496e-01
 1.5215e-01
 8.5522e-02
 5.1314e-01
 1.5237e-02
 1.6644e-01
 3.3239e-01
 2.4921e-01
 4.4337e-01
-2.8017e-01
-2.0385e-02
-2.4507e-07
 3.2134e-01
-4.9152e-08
 2.3777e-01
 2.3291e-01
 3.1527e-01
 4.2776e-01
 2.9313e-01
 2.6379e-01
 6.7598e-01
 4.2910e-01
 3.4566e-01
-8.6909e-08
 2.4729e-01
 3.0316e-01
 6.1577e-01
 3.9835e-01
 3.3207e-01
-4.1219e-01
 3.7807e-01
 1.7895e-01
 2.5748e-01
-4.4908e-01
 2.1306e-01
 5.6934e-01
 5.7274e-01
-4.0238e-01
 2.3406e-01
[torch.FloatTensor of size 64]
), (u'layer1.0.conv1.weight', Parameter containing:
(0 ,0 ,.,.) = 
  5.7593e-02 -9.5114e-02 -2.0272e-02
 -7.4556e-02 -7.9931e-01 -2.1284e-01
  6.5571e-02 -9.6534e-02 -1.2111e-02

(0 ,1 ,.,.) = 
 -6.9944e-03  1.4266e-02  5.5824e-04
  4.1238e-02 -1.6125e-01 -2.3208e-02
  3.2887e-03  7.1779e-03  7.1686e-02

(0 ,2 ,.,.) = 
 -2.3627e-09 -3.9270e-08 -3.2971e-08
  2.1737e-08  8.3299e-09  1.2543e-08
  1.1382e-08  8.8096e-09  1.5506e-08
   ...

(0 ,61,.,.) = 
 -3.6921e-02  1.8294e-02 -2.9358e-02
 -9.8615e-02 -4.3645e-02 -5.2717e-02
 -7.9635e-02  2.9396e-02  4.1479e-03

(0 ,62,.,.) = 
  1.6948e-02  1.3978e-02  9.6727e-03
  1.4297e-02 -6.6985e-04 -2.2077e-02
  1.2398e-02  3.5454e-02 -2.2320e-02

(0 ,63,.,.) = 
 -2.2600e-02 -2.5331e-02 -2.3548e-02
  6.0860e-02 -9.6779e-02  2.4057e-02
 -1.2750e-02  9.2237e-02  4.0152e-03
     ⋮ 

(1 ,0 ,.,.) = 
  2.2160e-02  4.2177e-02 -1.6428e-02
 -2.9667e-02  5.6865e-02  2.5486e-02
  4.3847e-03  5.1188e-02  1.0436e-02

(1 ,1 ,.,.) = 
  2.5342e-02  5.4374e-02  5.3888e-02
 -2.8334e-02 -2.0139e-01 -5.6358e-02
  5.6774e-02  7.4188e-02  2.1585e-02

(1 ,2 ,.,.) = 
 -3.1458e-08  3.5335e-08  5.3791e-08
 -2.6896e-08  5.1530e-08  5.4480e-08
 -3.8487e-08 -1.1234e-08 -7.5787e-09
   ...

(1 ,61,.,.) = 
 -1.2754e-01  4.3552e-02 -6.5607e-02
 -6.0462e-02  1.5989e-01 -7.7070e-03
 -9.4202e-02  5.0750e-02 -7.8154e-02

(1 ,62,.,.) = 
 -3.3309e-02  1.6631e-03 -8.8497e-03
  1.5553e-02 -5.8277e-02 -2.7437e-02
  1.3126e-02 -3.0268e-02 -2.1661e-03

(1 ,63,.,.) = 
 -4.2313e-03  3.4517e-02  3.8193e-03
  5.4317e-02 -1.2457e-02  3.2900e-02
  2.2000e-04  1.6040e-02  1.2764e-01
     ⋮ 

(2 ,0 ,.,.) = 
 -3.5247e-02  8.0748e-03  2.0353e-02
  1.7344e-02 -2.4320e-02 -1.5511e-04
 -2.7634e-04  2.8024e-02 -2.3777e-03

(2 ,1 ,.,.) = 
 -2.3741e-02 -3.2057e-03 -5.7059e-03
 -1.1582e-02  1.7200e-03  2.1067e-02
  4.3606e-03 -4.6459e-02 -7.2954e-02

(2 ,2 ,.,.) = 
  3.1002e-08  5.3568e-08  3.1873e-08
 -1.6063e-08 -1.8072e-08 -1.9508e-09
 -5.8339e-08 -4.5366e-08 -1.2395e-08
   ...

(2 ,61,.,.) = 
 -1.9689e-03 -2.6809e-02 -4.3760e-02
  2.4518e-02 -2.8396e-02 -3.5896e-02
 -1.7883e-04 -2.4661e-02 -2.0085e-02

(2 ,62,.,.) = 
  2.1551e-02  2.2789e-03 -2.5823e-02
  2.3272e-02 -7.9333e-03 -2.0814e-03
 -5.7062e-03 -2.6934e-02 -1.4421e-02

(2 ,63,.,.) = 
 -1.9674e-02  2.7914e-02 -2.0025e-02
  6.3222e-02 -3.9077e-02 -3.3220e-03
 -2.7434e-02  1.1390e-02 -3.1608e-03
...   
     ⋮ 

(61,0 ,.,.) = 
  4.3440e-03 -7.6970e-03 -6.4950e-02
  1.3846e-02 -2.2803e-02 -4.6478e-02
  2.7776e-02  1.6080e-02 -1.3363e-02

(61,1 ,.,.) = 
  4.7379e-02 -2.4982e-02 -2.7605e-02
  7.0091e-02  4.2084e-03 -1.0805e-01
  1.7526e-02  4.5647e-02  7.8810e-03

(61,2 ,.,.) = 
  2.6680e-09  2.7671e-08  2.4702e-08
  6.3905e-09  4.1020e-08  3.3631e-08
  5.8335e-09  1.3334e-08  9.6604e-09
   ...

(61,61,.,.) = 
  4.5900e-03  4.7084e-02 -8.6949e-03
 -6.3011e-03  5.9585e-02  5.8667e-03
 -2.0255e-02  4.3285e-02  4.5094e-03

(61,62,.,.) = 
  1.1253e-03 -5.7461e-03 -6.8411e-03
  6.0616e-03  7.3295e-03 -1.1784e-02
 -1.1455e-03  5.1868e-03 -1.9867e-02

(61,63,.,.) = 
  1.7529e-02  4.4606e-02 -2.6595e-02
  2.2102e-02  4.5857e-02  2.3347e-02
  1.8052e-02  5.9689e-02  1.7129e-02
     ⋮ 

(62,0 ,.,.) = 
 -2.9112e-02  3.4242e-03 -1.7523e-02
 -2.3682e-02  2.2716e-02 -3.8301e-02
 -1.0308e-02 -4.3802e-03 -2.3582e-02

(62,1 ,.,.) = 
 -4.9607e-02 -3.2724e-03 -1.5345e-02
 -1.3524e-02  5.4842e-02  1.1187e-02
 -2.3549e-02 -2.8495e-02 -6.6371e-02

(62,2 ,.,.) = 
 -4.9804e-08 -2.8211e-08 -2.0583e-08
 -5.2389e-08 -2.8522e-08 -3.5099e-08
 -3.2171e-08 -3.4110e-08 -4.3153e-08
   ...

(62,61,.,.) = 
  3.4487e-03  2.6532e-02 -1.1202e-02
  7.0925e-03  3.7903e-02 -3.2481e-02
  4.1381e-02  3.2329e-02  2.8309e-03

(62,62,.,.) = 
 -6.5955e-03  1.6476e-02  2.1810e-02
 -1.2293e-02  2.2310e-02  1.2645e-02
 -8.9897e-03  1.1948e-03 -5.2390e-03

(62,63,.,.) = 
 -2.5295e-03  7.2689e-02 -7.8046e-03
 -4.2221e-02  7.9756e-02 -2.7738e-02
  4.6716e-03 -5.6596e-02 -8.2261e-02
     ⋮ 

(63,0 ,.,.) = 
  5.2235e-02  3.5231e-03 -3.3131e-02
  3.1048e-02  1.6193e-02  1.7283e-02
  1.4446e-02  2.4302e-02 -1.9689e-03

(63,1 ,.,.) = 
 -2.4717e-02  8.3009e-03 -6.1336e-02
 -1.6134e-02  5.5323e-02 -6.5029e-02
 -2.4715e-02  1.0030e-03  3.2437e-02

(63,2 ,.,.) = 
  1.8496e-08  5.2798e-09  4.1820e-08
  3.7489e-08  2.5450e-08  3.0419e-08
  1.1246e-08 -5.6956e-09 -2.0008e-08
   ...

(63,61,.,.) = 
  7.1194e-03 -4.1052e-02 -1.0002e-02
  2.5924e-02 -6.3819e-02  1.3366e-02
  2.9751e-02 -7.9476e-03  1.4007e-02

(63,62,.,.) = 
 -2.5166e-03  2.2051e-02 -1.9967e-02
 -5.9436e-02  4.3872e-02  2.6832e-02
 -1.7509e-02  2.4625e-02  2.4822e-02

(63,63,.,.) = 
  3.5832e-02 -7.0357e-02  3.9452e-03
 -2.9835e-02  9.2727e-02  1.9336e-02
 -2.9145e-02 -9.7087e-03 -7.3388e-02
[torch.FloatTensor of size 64x64x3x3]
), (u'layer1.0.bn1.running_mean', 
-0.4332
-0.1757
 0.0307
-0.7058
-1.6364
-0.7989
-0.0678
-0.1956
-1.1260
-0.9578
 0.0030
-1.8265
-0.0393
-0.8680
-1.1062
-0.6359
-0.9872
-0.5778
-1.3349
-0.3408
-1.1982
-1.6058
-2.1702
-0.8814
-0.8175
-0.6951
 0.6542
-1.6422
 0.2811
 0.3163
-0.4123
-1.4023
-1.5044
-2.5031
-2.1580
-1.3645
-0.8579
-0.2206
-2.5548
-2.2695
-0.1609
-0.8552
 0.5289
 1.3492
-0.9382
-0.3356
-2.9168
-1.5967
-1.8875
-1.6166
-1.9443
-2.0195
-0.9671
-1.3881
-1.8836
 0.1869
-1.3487
-0.4593
-0.4542
-0.9032
-0.0768
-1.7719
 1.2484
-0.9139
[torch.FloatTensor of size 64]
), (u'layer1.0.bn1.running_var', 
 0.4351
 0.2044
 0.2344
 0.5559
 0.9626
 0.3484
 0.0871
 0.6851
 0.4714
 1.2642
 0.1519
 0.6730
 0.2430
 0.5577
 0.8701
 0.2419
 0.2052
 0.8149
 0.3040
 0.2617
 0.8060
 0.8007
 1.5581
 0.2404
 0.4445
 0.6765
 0.5562
 0.9378
 0.2584
 0.3173
 0.0962
 0.4118
 0.5197
 0.9767
 1.2703
 0.8908
 0.3609
 0.2227
 1.1588
 1.5965
 0.4060
 0.2559
 0.1763
 0.2797
 0.3757
 0.1282
 1.8280
 0.3145
 0.7419
 0.2129
 0.8122
 0.4660
 0.4065
 0.4914
 0.4814
 0.1697
 0.4000
 0.3867
 0.1499
 0.4137
 0.0671
 0.8303
 0.2434
 0.3449
[torch.FloatTensor of size 64]
), (u'layer1.0.bn1.weight', Parameter containing:
 0.3090
 0.2147
 0.2366
 0.4259
 0.5137
 0.2181
 0.2204
 0.2300
 0.2640
 0.2695
 0.2138
 0.4602
 0.2661
 0.2319
 0.3900
 0.2389
 0.2660
 0.3634
 0.3474
 0.2477
 0.3285
 0.5349
 0.6440
 0.2275
 0.4482
 0.3078
 0.2604
 0.4651
 0.2179
 0.2858
 0.3426
 0.4420
 0.4450
 0.4500
 0.5516
 0.5092
 0.2564
 0.2634
 0.5664
 0.6410
 0.2228
 0.1986
 0.2460
 0.2242
 0.2143
 0.1982
 0.6368
 0.3106
 0.5049
 0.2403
 0.3065
 0.3760
 0.3794
 0.4281
 0.2991
 0.3326
 0.2596
 0.3345
 0.2006
 0.4351
 0.1683
 0.5149
 0.2629
 0.3254
[torch.FloatTensor of size 64]
), (u'layer1.0.bn1.bias', Parameter containing:
 0.1657
 0.2420
 0.1780
-0.0431
-0.2053
 0.1598
 0.2929
 0.0912
 0.1116
 0.0884
 0.1104
-0.2035
 0.1539
 0.0857
-0.1094
 0.0654
 0.0766
-0.2067
-0.0212
 0.1396
 0.0401
-0.2827
-0.3257
-0.0035
-0.4373
-0.1248
 0.1282
-0.0874
 0.1199
-0.0829
-0.5315
-0.0780
-0.3876
-0.0547
-0.1816
-0.1888
 0.1320
 0.0031
-0.2697
-0.2984
 0.1394
 0.2597
 0.1372
 0.0053
 0.0132
 0.3295
-0.2715
-0.0187
-0.2467
 0.1579
 0.0165
-0.0890
-0.1903
-0.0787
 0.1700
-0.4832
 0.0619
-0.0677
 0.3125
-0.5064
 0.3138
-0.2617
-0.1545
 0.0063
[torch.FloatTensor of size 64]
), (u'layer1.0.conv2.weight', Parameter containing:
(0 ,0 ,.,.) = 
  2.5947e-02 -1.0458e-01 -4.7712e-03
 -8.6223e-02 -3.3021e-01 -1.0275e-01
 -5.7426e-02 -1.9074e-01 -5.4646e-02

(0 ,1 ,.,.) = 
 -1.6951e-02  2.1384e-02 -2.1074e-03
 -3.2983e-03  4.5014e-02 -1.1510e-02
 -5.9602e-02  6.4942e-03  2.9080e-03

(0 ,2 ,.,.) = 
 -4.4903e-03  1.9637e-02  1.3167e-02
  1.3050e-02 -7.7471e-03  1.1931e-02
  1.3454e-02  1.1103e-02  5.5145e-03
   ...

(0 ,61,.,.) = 
  1.2706e-03 -7.7438e-03  2.0753e-02
 -4.0024e-02 -4.0383e-02 -3.4821e-02
 -2.0251e-02 -9.5164e-03  1.3954e-02

(0 ,62,.,.) = 
 -2.3430e-03  3.2303e-02 -4.3342e-03
  8.6194e-03  1.0553e-02  1.8074e-03
 -1.2760e-02 -1.0232e-02  4.5711e-03

(0 ,63,.,.) = 
  1.5302e-02  2.1361e-02 -7.0908e-03
 -1.4221e-02  4.5979e-02  2.1369e-02
  3.1312e-02  6.6428e-02  2.1465e-02
     ⋮ 

(1 ,0 ,.,.) = 
  5.3422e-02  4.0515e-02  9.6680e-03
  3.2884e-02 -2.3474e-02  3.4642e-02
 -1.2861e-02  5.0066e-02  5.4579e-02

(1 ,1 ,.,.) = 
  2.8764e-02  4.3431e-02  2.8258e-02
  2.8734e-02 -3.5459e-02 -5.2788e-02
 -5.5119e-02 -7.1813e-02 -8.2970e-02

(1 ,2 ,.,.) = 
  9.5293e-02  1.2549e-01 -6.4001e-02
 -4.1166e-02 -9.0480e-04  5.1387e-02
 -1.1311e-01 -7.9823e-02  1.4373e-01
   ...

(1 ,61,.,.) = 
 -7.6924e-03  2.0647e-02  1.9521e-02
 -6.7352e-03  1.2601e-04  4.8309e-03
 -6.2405e-03 -9.2119e-03 -2.5806e-04

(1 ,62,.,.) = 
 -2.6153e-02 -2.4641e-02  4.0970e-02
 -1.9164e-02 -1.0160e-02  3.3163e-02
  5.4200e-03  9.0485e-04  6.7799e-04

(1 ,63,.,.) = 
  7.7762e-03  2.6447e-02  6.3650e-02
 -3.0608e-02  2.4959e-02  1.2951e-02
 -2.0938e-02 -7.7342e-03 -3.8790e-02
     ⋮ 

(2 ,0 ,.,.) = 
  1.0893e-02 -1.4409e-02  1.5730e-02
  1.6655e-02  4.4535e-02  6.3212e-02
  3.4121e-02  7.3135e-02  5.9203e-02

(2 ,1 ,.,.) = 
  2.3195e-03  7.7598e-03  2.0308e-02
  2.0457e-02  4.0029e-02  3.4744e-02
 -4.7356e-02 -3.7286e-02  1.4542e-02

(2 ,2 ,.,.) = 
 -2.2742e-02 -1.9000e-02 -8.4317e-03
 -9.8759e-04  2.1510e-02  6.3959e-03
 -9.4558e-03  2.6833e-03 -3.1136e-02
   ...

(2 ,61,.,.) = 
 -7.5787e-03 -1.6056e-02 -6.4204e-04
 -5.5104e-03  1.4252e-02  4.5000e-02
 -9.2800e-03  2.2351e-02  4.1728e-02

(2 ,62,.,.) = 
  2.5705e-02  4.8207e-02  7.9145e-02
 -4.4350e-03  3.8872e-03  4.1694e-02
  8.0536e-04 -1.0601e-02  9.2706e-03

(2 ,63,.,.) = 
 -3.3892e-02  9.3543e-03  4.1746e-02
 -1.6470e-02  3.9542e-03  6.2438e-02
 -3.1055e-02 -3.6302e-03  7.0817e-02
...   
     ⋮ 

(61,0 ,.,.) = 
 -7.1044e-05 -9.0020e-03 -2.6998e-03
  3.0072e-03  1.1579e-02  1.5214e-02
  3.4832e-03  1.1353e-05  1.6320e-02

(61,1 ,.,.) = 
 -2.6334e-02  2.1967e-02 -6.0039e-02
  4.4519e-02  1.3203e-01 -9.1163e-03
  5.4242e-02  1.3726e-01  2.7454e-02

(61,2 ,.,.) = 
  1.7122e-02  3.7646e-03  1.4872e-02
  1.2092e-02  1.1319e-02  3.4667e-02
  8.1790e-03 -2.0805e-02  2.7143e-02
   ...

(61,61,.,.) = 
 -1.0111e-02 -1.0526e-02  2.8394e-02
 -2.5112e-02 -2.2196e-02  3.7229e-02
 -3.8220e-02 -4.6644e-02  1.5660e-02

(61,62,.,.) = 
 -2.5913e-03 -2.4307e-02  1.0611e-02
 -2.1730e-02 -4.3938e-02 -7.1536e-03
 -2.5171e-02 -5.9467e-02 -2.5577e-02

(61,63,.,.) = 
  2.8652e-02  2.5850e-04  1.1416e-03
  3.7812e-02 -1.1271e-03  9.6027e-03
  3.9350e-02  1.0134e-02  1.0449e-02
     ⋮ 

(62,0 ,.,.) = 
 -7.9305e-03  7.0872e-03  2.1412e-02
 -6.0065e-02  1.4147e-03  9.7281e-02
 -6.0130e-02 -2.1725e-02  3.6863e-02

(62,1 ,.,.) = 
  2.8024e-02  2.6183e-02 -2.3027e-02
  5.1900e-02 -2.0588e-03 -1.0940e-01
 -3.2729e-02 -6.2752e-03  8.0630e-03

(62,2 ,.,.) = 
 -1.8062e-02 -1.9510e-02  4.3163e-02
  4.6080e-02  2.9494e-02  4.0844e-02
  5.9607e-03 -6.5891e-03 -6.4623e-03
   ...

(62,61,.,.) = 
  2.2193e-02  8.4653e-03  3.6764e-03
  1.7549e-02  2.1971e-02 -4.5108e-03
  2.1124e-02  3.4591e-02 -1.6310e-02

(62,62,.,.) = 
  3.8144e-02  4.8395e-02 -9.5556e-02
  1.8923e-02  1.1341e-02 -7.6311e-02
  4.7358e-03  3.2138e-02 -7.4777e-02

(62,63,.,.) = 
 -1.9031e-02 -3.2568e-02 -3.8251e-02
  1.0705e-02  2.3121e-03 -7.5078e-02
  3.3316e-02  3.5515e-02 -2.1023e-03
     ⋮ 

(63,0 ,.,.) = 
 -1.3330e-01  7.4683e-02 -3.8624e-03
  9.1377e-02  8.2415e-02  3.9469e-02
 -1.8265e-02 -5.9943e-02  8.9354e-02

(63,1 ,.,.) = 
  1.5566e-02 -4.1716e-02  1.0633e-02
  7.2644e-03  3.1934e-02  1.2732e-03
 -2.0851e-02 -3.7593e-03 -7.0170e-02

(63,2 ,.,.) = 
 -6.6139e-02  1.0627e-01  1.9590e-02
  5.4987e-02 -1.5552e-01 -1.8819e-02
 -4.2554e-03  4.4964e-02 -2.4632e-02
   ...

(63,61,.,.) = 
 -6.1691e-02 -4.5531e-02 -9.1721e-03
  4.3995e-02  4.5703e-02 -7.0108e-02
  1.1388e-02  4.4678e-02 -4.5953e-02

(63,62,.,.) = 
  4.3432e-03  2.3194e-02 -2.1895e-02
 -8.0216e-02 -5.7606e-02 -9.8455e-03
 -3.3285e-02 -1.1468e-01 -2.3779e-02

(63,63,.,.) = 
 -6.3785e-02 -2.4485e-02 -4.9061e-02
 -6.1594e-02  1.0328e-01  5.9685e-03
  8.1863e-02 -3.0314e-02 -4.6373e-03
[torch.FloatTensor of size 64x64x3x3]
), (u'layer1.0.bn2.running_mean', 
 0.1677
 0.0052
 0.7868
 0.1670
 0.4774
-0.0362
-0.0578
 0.0020
-0.3420
 0.0674
-0.0970
-0.1000
-0.0659
-0.0385
-0.0709
-0.2218
-0.1343
 0.1198
-0.0602
 0.0006
 0.0864
-0.1466
 0.0354
-0.1539
-0.0416
-0.4317
 0.0330
-0.0797
-0.5868
-0.2461
-0.1505
-0.4012
-0.2187
-0.6351
 0.0698
 0.1412
 0.2754
-0.5645
-0.1113
-0.2414
-0.1313
-0.0215
 0.1264
-0.1684
 0.1693
-0.4684
-0.6908
 0.2044
 0.0015
-0.0543
-0.1487
 0.1262
-0.1145
-0.1597
 0.1230
-0.1605
-0.2256
-0.0995
-0.1621
 0.3230
-0.0055
 0.1091
 0.0781
 0.0121
[torch.FloatTensor of size 64]
), (u'layer1.0.bn2.running_var', 
 0.1130
 0.0412
 0.0335
 0.1282
 0.2084
 0.0307
 0.0606
 0.0737
 0.0313
 0.0409
 0.1376
 0.0399
 0.0437
 0.0282
 0.1588
 0.0288
 0.0837
 0.0799
 0.0177
 0.1839
 0.0884
 0.3054
 0.1512
 0.0394
 0.0374
 0.0969
 0.1719
 0.0610
 0.0607
 0.1560
 0.0448
 0.1236
 0.0464
 0.1005
 0.0498
 0.0481
 0.0450
 0.1229
 0.0623
 0.0381
 0.0229
 0.1227
 0.1656
 0.1047
 0.1316
 0.1834
 0.0622
 0.1272
 0.1929
 0.0419
 0.0263
 0.2623
 0.0712
 0.1442
 0.0937
 0.0983
 0.1163
 0.1511
 0.1009
 0.0342
 0.1854
 0.0698
 0.0631
 0.0350
[torch.FloatTensor of size 64]
), (u'layer1.0.bn2.weight', Parameter containing:
 0.2496
 0.2198
 0.2756
 0.6073
 0.2654
 0.2942
 0.1136
 0.4425
 0.2868
 0.2974
 0.2506
 0.4103
 0.4855
 0.3383
 0.4670
 0.1772
 0.2171
 0.5025
 0.2263
 0.3667
 0.4867
 0.4586
 0.4652
 0.2200
 0.1510
 0.2761
 0.3813
 0.2803
 0.2382
 0.3953
 0.3032
 0.3163
 0.2025
 0.2323
 0.2003
 0.1661
 0.4690
 0.3476
 0.3414
 0.2274
 0.2485
 0.2356
 0.2726
 0.4657
 0.3429
 0.2465
 0.4674
 0.2812
 0.6241
 0.4152
 0.3403
 0.4218
 0.1152
 0.2985
 0.5802
 0.2795
 0.4706
 0.4517
 0.4303
 0.2749
 0.3427
 0.1137
 0.5069
 0.4370
[torch.FloatTensor of size 64]
), (u'layer1.0.bn2.bias', Parameter containing:
 0.2275
 0.0087
-0.0673
-0.0688
 0.3598
-0.2017
-0.0000
 0.0237
 0.3955
 0.0371
 0.0069
 0.2758
-0.0703
-0.2397
-0.0818
-0.0941
-0.1454
 0.0373
-0.3617
-0.3956
-0.4079
 0.0036
-0.2788
-0.0353
-0.0703
 0.2101
-0.0046
-0.1966
-0.2807
-0.0165
 0.2645
-0.0894
-0.2105
-0.1303
 0.1721
 0.0534
-0.2230
-0.0480
 0.2457
 0.2095
 0.1622
 0.1137
 0.1146
-0.1487
-0.0322
-0.3055
 0.4912
 0.1087
 0.0128
 0.1004
 0.4155
-0.0147
 0.0239
 0.0998
-0.1727
 0.1008
-0.1456
-0.2274
 0.1364
 0.2013
-0.0574
 0.2353
-0.1130
 0.3093
[torch.FloatTensor of size 64]
), (u'layer1.1.conv1.weight', Parameter containing:
(0 ,0 ,.,.) = 
  1.9712e-02 -5.2562e-03 -3.7619e-03
 -1.9635e-02 -1.2336e-02 -3.5196e-02
  5.0761e-02  7.5668e-02  4.3344e-02

(0 ,1 ,.,.) = 
  1.4160e-02 -8.6094e-03 -1.0541e-02
 -4.2586e-02 -2.3814e-02 -5.4694e-02
 -1.4018e-03  4.6720e-02  5.0898e-02

(0 ,2 ,.,.) = 
  2.1559e-02  4.1633e-03 -9.7118e-03
 -9.3201e-03 -2.5432e-02 -2.8274e-02
 -3.0107e-02 -4.8230e-02 -2.6001e-02
   ...

(0 ,61,.,.) = 
  5.4300e-03  9.1875e-02  3.1938e-03
 -1.7945e-02  5.7266e-02 -8.4098e-03
 -3.4961e-02 -2.3296e-02 -3.5089e-02

(0 ,62,.,.) = 
  2.5603e-02 -3.1689e-02 -5.4160e-02
  6.9736e-02 -1.0716e-02 -6.8034e-02
  3.5578e-02  3.4749e-02 -1.9334e-02

(0 ,63,.,.) = 
 -6.5420e-02 -4.6427e-03 -2.3362e-02
  7.5833e-02  9.1174e-03 -4.9701e-02
  6.2944e-02 -9.8735e-02  3.3158e-02
     ⋮ 

(1 ,0 ,.,.) = 
 -9.0557e-03 -3.0753e-02  1.1953e-02
 -3.2539e-02 -6.2846e-03 -2.0235e-02
  4.7996e-03 -2.1462e-02 -4.1557e-03

(1 ,1 ,.,.) = 
  1.7163e-02 -2.3303e-03  7.3972e-02
 -3.2105e-02 -7.7536e-02 -1.2648e-02
  3.8985e-02 -4.3170e-02  1.0904e-02

(1 ,2 ,.,.) = 
 -2.9643e-02 -5.8534e-02 -5.9736e-02
 -2.9437e-02 -3.6441e-02 -1.2380e-02
 -2.2775e-02 -2.4485e-03 -1.6124e-03
   ...

(1 ,61,.,.) = 
  2.6830e-02  1.4267e-02  6.2658e-02
  3.0585e-04 -5.3241e-03  3.2786e-03
  2.1097e-02 -2.3189e-02  1.2102e-02

(1 ,62,.,.) = 
 -6.1182e-02 -2.9227e-02  2.0036e-02
 -7.6089e-02 -7.7057e-02  8.6544e-02
 -3.9228e-02 -3.2361e-02 -8.8970e-02

(1 ,63,.,.) = 
 -1.3372e-01  8.8362e-02  8.3836e-02
 -1.1688e-02  4.3156e-01 -3.3629e-03
 -2.3925e-02 -1.0092e-01 -1.0184e-01
     ⋮ 

(2 ,0 ,.,.) = 
  8.0165e-02  4.3042e-02  2.7325e-03
  3.5269e-02 -1.5504e-02 -3.5011e-02
 -1.7164e-02 -2.6827e-02 -3.3946e-02

(2 ,1 ,.,.) = 
  4.5439e-02  5.1585e-02  1.8321e-02
 -3.9647e-02  2.3956e-02 -2.6609e-02
 -3.0358e-02 -6.4729e-02  2.5834e-02

(2 ,2 ,.,.) = 
  3.8105e-02  4.0986e-02  4.1005e-02
  1.7584e-02 -1.6494e-02 -3.2716e-02
  5.5886e-03 -1.7068e-02 -3.0605e-02
   ...

(2 ,61,.,.) = 
 -1.3694e-01 -1.4074e-01  5.1423e-02
 -1.2521e-01 -1.3128e-01  7.5733e-02
 -4.5032e-02 -1.7081e-02  7.1252e-02

(2 ,62,.,.) = 
  6.3381e-02  1.5874e-02 -2.7322e-02
  8.0356e-02  3.6104e-02 -2.8506e-02
  2.6638e-02  2.2021e-02  3.2345e-02

(2 ,63,.,.) = 
 -1.2068e-03 -4.6179e-02 -1.5351e-02
 -1.1276e-02  1.9200e-02  3.4336e-02
  1.6540e-02 -7.8592e-03 -2.5392e-02
...   
     ⋮ 

(61,0 ,.,.) = 
  3.3384e-02  6.9963e-02  1.0745e-02
 -1.7518e-02 -5.3524e-02 -6.4960e-02
  3.4248e-04 -4.5557e-02 -4.7336e-02

(61,1 ,.,.) = 
 -5.1031e-03  7.9784e-03 -8.6553e-04
 -1.6557e-03  1.4661e-02  5.3365e-03
 -3.1784e-02 -6.6940e-02 -4.6889e-02

(61,2 ,.,.) = 
 -1.1775e-02  7.2759e-03  7.6622e-03
 -6.1288e-02 -5.2078e-02 -4.5152e-02
 -8.6584e-02 -9.7381e-02 -1.0405e-01
   ...

(61,61,.,.) = 
  2.1243e-02  6.2456e-02  2.5188e-02
 -2.2911e-02 -2.1100e-03 -2.7573e-02
  4.6557e-02  6.4980e-02  3.1879e-02

(61,62,.,.) = 
  6.2867e-03  2.4255e-02  8.9674e-02
 -7.7718e-03 -5.4311e-02 -4.6843e-02
 -6.7499e-03 -6.6857e-02 -4.9842e-02

(61,63,.,.) = 
  4.7326e-03 -3.9533e-02  1.1500e-03
 -2.7957e-02 -1.3466e-01 -6.0753e-02
 -3.2010e-03  7.2213e-02  1.1009e-01
     ⋮ 

(62,0 ,.,.) = 
  2.3763e-02 -1.7876e-02 -7.4843e-03
  1.6239e-02  5.4479e-04 -3.3735e-02
 -2.2854e-02 -1.4316e-03  1.1010e-02

(62,1 ,.,.) = 
  5.2277e-03 -2.5941e-03  5.9594e-03
 -2.9058e-03 -7.3409e-03  3.0652e-02
  7.5540e-02  6.6445e-03  2.5518e-03

(62,2 ,.,.) = 
 -6.5970e-02 -4.1286e-02 -3.0278e-02
 -3.5108e-02 -3.9099e-02 -1.6818e-02
 -1.0224e-02 -8.6995e-03 -5.9939e-04
   ...

(62,61,.,.) = 
  2.1233e-02 -2.4559e-02 -7.4436e-03
 -4.3734e-03 -3.2864e-02 -3.3453e-02
  8.9269e-03 -1.7646e-02  3.8375e-04

(62,62,.,.) = 
 -7.8930e-02 -7.2940e-02 -6.7911e-02
 -8.4146e-02 -8.3657e-02  5.3666e-02
 -3.5577e-02 -3.6835e-02  5.8987e-03

(62,63,.,.) = 
  8.3767e-02  8.0476e-05  7.2164e-02
 -6.4219e-02 -1.2661e-01  4.6026e-02
  9.3033e-02 -4.7521e-02  3.6777e-02
     ⋮ 

(63,0 ,.,.) = 
  4.1012e-02  1.3361e-03 -5.8616e-02
  4.2461e-02  2.9437e-03 -2.0445e-02
  7.6097e-02  5.2504e-02 -5.5636e-03

(63,1 ,.,.) = 
  2.2046e-02  4.0888e-03  1.4645e-02
 -7.7532e-02 -1.1912e-01 -7.0892e-02
 -1.0618e-02 -3.2121e-02 -2.3969e-02

(63,2 ,.,.) = 
 -2.1612e-02 -2.6110e-03 -3.1664e-02
 -3.2892e-02 -3.9771e-02 -5.1463e-02
 -2.6150e-02 -3.6554e-02 -2.3315e-02
   ...

(63,61,.,.) = 
  4.4600e-03  8.4181e-02  2.3199e-02
  5.7595e-02  1.3036e-01  3.2172e-02
 -2.2774e-03  4.2065e-02 -4.8619e-02

(63,62,.,.) = 
  3.1533e-02 -4.3655e-02  2.0361e-02
  3.9973e-03 -5.1430e-02 -6.3839e-02
  6.4002e-03  4.5347e-02  4.7346e-02

(63,63,.,.) = 
 -9.1818e-02  1.0264e-02  9.6565e-02
 -2.1635e-03 -2.3452e-02 -5.9038e-02
  1.9402e-02  2.8854e-02 -9.6113e-02
[torch.FloatTensor of size 64x64x3x3]
), (u'layer1.1.bn1.running_mean', 
-0.6534
 0.9240
-1.3403
-0.7395
-0.5830
-1.6717
-0.3376
 0.1913
-0.4565
-0.7877
-0.3756
-0.2295
-1.7003
-0.6135
 0.5422
-0.1072
-0.2315
-0.3775
-1.8026
-0.7210
-0.0288
-1.2585
-1.8144
 0.0504
-0.0739
-1.5506
-1.5092
-1.0623
 0.1706
 0.1527
 0.3983
-2.9065
-0.9070
-0.2983
-1.8404
-2.3956
 0.2241
-0.0760
-0.9525
-1.4632
 0.7657
-0.3832
 0.8590
-1.3211
-1.2599
-0.1220
-0.2230
 0.5071
 1.0262
-0.5969
-0.0104
-1.4013
-0.4267
-0.9979
-1.9458
 0.1991
-0.8841
-0.8302
-0.3076
-2.0759
-1.2645
 0.2679
 0.4349
-1.2568
[torch.FloatTensor of size 64]
), (u'layer1.1.bn1.running_var', 
 0.7111
 0.5543
 0.6143
 0.5148
 0.2840
 0.4924
 0.3536
 0.3939
 0.2511
 0.4859
 0.1803
 0.7468
 0.4225
 0.3686
 0.1719
 0.2777
 0.3676
 0.2311
 0.3515
 0.4917
 0.1393
 0.1732
 0.6248
 0.3038
 0.1599
 0.5246
 0.2410
 0.5096
 0.5251
 0.5369
 0.1800
 1.0623
 0.4006
 0.2060
 0.5194
 0.4981
 0.4250
 0.2616
 0.8252
 0.4991
 0.3290
 0.3642
 0.2716
 0.6520
 0.4492
 0.2753
 0.3377
 0.3167
 0.3830
 0.4624
 0.4098
 0.5566
 0.5048
 0.4747
 0.6820
 0.4387
 0.3506
 0.2995
 0.5595
 0.6855
 0.5260
 0.6478
 0.4960
 0.5449
[torch.FloatTensor of size 64]
), (u'layer1.1.bn1.weight', Parameter containing:
 0.3910
 0.4375
 0.3746
 0.3990
 0.3404
 0.3503
 0.2618
 0.2707
 0.2865
 0.4308
 0.1895
 0.3041
 0.3837
 0.2944
 0.2105
 0.3304
 0.2943
 0.2887
 0.2060
 0.4627
 0.2335
 0.1831
 0.4489
 0.2830
 0.3389
 0.2997
 0.3503
 0.2735
 0.3908
 0.2817
 0.2636
 0.4462
 0.3282
 0.3776
 0.4471
 0.3878
 0.2516
 0.3172
 0.3661
 0.3166
 0.3818
 0.3128
 0.2274
 0.3627
 0.2902
 0.2381
 0.2988
 0.2469
 0.3840
 0.2886
 0.3197
 0.2879
 0.3218
 0.4559
 0.3500
 0.2420
 0.3396
 0.3519
 0.3839
 0.3806
 0.4039
 0.2826
 0.4594
 0.3342
[torch.FloatTensor of size 64]
), (u'layer1.1.bn1.bias', Parameter containing:
-0.0997
-0.4755
-0.0474
-0.2698
-0.0834
-0.0072
 0.0474
 0.1022
-0.0170
-0.1471
 0.2307
 0.1447
-0.1775
 0.0273
 0.1559
-0.1836
 0.1238
-0.1522
 0.0554
-0.2881
-0.2606
 0.2316
-0.3242
-0.0219
-0.2645
 0.0576
-0.2465
 0.0481
-0.3530
 0.0950
-0.1862
-0.1707
-0.0161
-0.2604
-0.3145
-0.1083
 0.0659
-0.1427
-0.0570
-0.0076
-0.3006
-0.0744
-0.0683
-0.1104
 0.0253
 0.0489
-0.2515
 0.1150
-0.3783
 0.0846
-0.0368
 0.1439
-0.0468
-0.3087
-0.0240
 0.1397
-0.0908
-0.1795
-0.1129
-0.0793
-0.1491
 0.0594
-0.4433
-0.0138
[torch.FloatTensor of size 64]
), (u'layer1.1.conv2.weight', Parameter containing:
(0 ,0 ,.,.) = 
 -2.1574e-02 -4.5688e-03  4.5483e-03
 -8.1870e-03  4.1740e-02  2.3010e-02
 -8.9283e-03  5.7352e-02  2.9818e-02

(0 ,1 ,.,.) = 
  5.8627e-02  4.2864e-02  4.4912e-02
  2.2281e-02 -1.2969e-02  7.6099e-03
  4.5373e-02  3.0712e-02  3.7700e-02

(0 ,2 ,.,.) = 
 -1.5456e-02 -3.8692e-02 -4.6010e-02
 -2.3123e-02  2.8293e-02  4.7790e-03
 -2.0328e-02  1.3756e-02  2.5883e-02
   ...

(0 ,61,.,.) = 
  5.1302e-02  4.2291e-02  5.7833e-02
  4.5210e-02  5.5850e-02  1.4318e-02
  1.4241e-02  1.7968e-02  1.4344e-02

(0 ,62,.,.) = 
  4.6012e-03  1.2566e-02  4.8931e-02
 -6.5754e-03 -2.6431e-02  1.5855e-02
  1.3192e-02  1.9011e-02  1.3842e-02

(0 ,63,.,.) = 
  6.1983e-02  6.9919e-02  6.1035e-02
  6.1253e-02  9.9557e-02  5.9060e-02
  5.8298e-02  8.1652e-02  8.1499e-02
     ⋮ 

(1 ,0 ,.,.) = 
 -1.0088e-02 -1.2959e-02  9.7798e-03
  5.5408e-02  4.3501e-02  5.6983e-02
  5.3427e-02  3.5118e-02  3.6782e-02

(1 ,1 ,.,.) = 
  2.4442e-03 -3.0207e-02 -1.0377e-02
 -4.5297e-02 -4.5318e-02  5.4623e-03
 -4.4762e-02 -1.5508e-02  6.9745e-03

(1 ,2 ,.,.) = 
  3.9658e-02  3.6838e-02  5.8796e-03
  2.3207e-02  3.9240e-03 -2.0887e-02
 -1.4829e-02  5.3606e-03  1.7404e-03
   ...

(1 ,61,.,.) = 
  3.2160e-02  5.9042e-02  4.8433e-02
 -2.6464e-02 -8.0667e-03 -1.0359e-02
 -2.6699e-02 -9.5411e-03 -2.8902e-02

(1 ,62,.,.) = 
 -2.9235e-02 -3.9078e-02 -4.4955e-02
 -2.0346e-02 -4.4891e-02 -3.7477e-02
  1.9653e-02 -1.5562e-03 -5.8245e-03

(1 ,63,.,.) = 
 -5.0696e-02 -4.8902e-02  9.1631e-03
  5.1668e-03  2.0509e-02  6.6874e-02
  2.8934e-02  4.6717e-02  2.1371e-02
     ⋮ 

(2 ,0 ,.,.) = 
  2.1744e-02 -2.8354e-02 -3.2557e-02
  3.0519e-02  1.8536e-02  1.5244e-02
  1.3832e-03  1.7051e-02  3.2020e-02

(2 ,1 ,.,.) = 
 -3.6293e-02  1.0914e-02  4.5371e-02
  1.3399e-02  6.4272e-02  8.8210e-02
  4.6697e-02  9.9653e-02  8.7606e-02

(2 ,2 ,.,.) = 
 -2.4336e-02 -2.9627e-02  1.9537e-02
 -3.3412e-02 -2.2290e-02 -2.8879e-02
  1.4765e-02  1.7234e-02 -1.8185e-02
   ...

(2 ,61,.,.) = 
 -3.9859e-02 -7.1075e-02 -5.8546e-02
  2.2902e-02  1.1184e-02 -2.3654e-02
  8.1897e-02  1.1996e-01  9.3242e-02

(2 ,62,.,.) = 
  3.1984e-02  7.4931e-02  6.6020e-02
  2.8490e-02  1.1931e-01  1.2100e-01
  7.9259e-04  4.3812e-02  4.4648e-02

(2 ,63,.,.) = 
  3.2748e-02  4.1444e-02 -8.1932e-03
  4.5541e-02  2.9426e-02 -8.5440e-03
  1.1634e-04  1.8045e-03  1.4826e-02
...   
     ⋮ 

(61,0 ,.,.) = 
 -4.4144e-02 -8.3106e-02 -5.3073e-02
  3.2124e-02  1.0286e-02  2.4409e-02
  6.1606e-03 -1.9455e-02  4.0534e-02

(61,1 ,.,.) = 
  5.6026e-04  9.6961e-03  2.5010e-03
  7.1679e-03 -1.7535e-02 -2.3857e-02
 -9.8745e-03 -1.8550e-02  1.7301e-03

(61,2 ,.,.) = 
  4.3882e-03  4.2049e-02  7.5950e-02
 -6.5610e-02 -3.6130e-02 -1.9404e-02
 -3.8091e-02 -2.6749e-02 -1.3865e-02
   ...

(61,61,.,.) = 
 -4.5593e-02 -4.6050e-02 -2.2809e-02
 -9.7648e-03  2.4910e-03  2.4503e-02
  2.0381e-02  5.2393e-02  6.9019e-02

(61,62,.,.) = 
  9.3306e-04  1.2483e-02 -1.1817e-02
 -1.2627e-02 -1.8756e-02 -1.4144e-03
 -5.2490e-03 -4.6126e-03 -1.3224e-02

(61,63,.,.) = 
  7.4689e-04 -1.0135e-02 -7.8264e-03
  1.2491e-02 -2.5865e-02  4.0514e-02
  5.8855e-03  4.5990e-02  1.0651e-01
     ⋮ 

(62,0 ,.,.) = 
  1.2262e-02 -1.5378e-02  1.3862e-03
  4.1166e-02 -2.4944e-02 -2.6686e-02
 -1.7423e-02  5.2690e-03 -2.1861e-02

(62,1 ,.,.) = 
 -3.1207e-02 -3.3025e-02  2.2114e-02
 -2.4009e-02  1.2988e-02  2.2430e-02
  1.0332e-02  4.3601e-03  4.7321e-03

(62,2 ,.,.) = 
  2.0182e-02  6.1569e-02 -2.8771e-02
  5.8231e-02  4.6767e-02 -2.8417e-05
  3.7545e-02 -4.5886e-02  1.5849e-02
   ...

(62,61,.,.) = 
  7.0431e-03 -3.6082e-03  7.1986e-03
  2.4895e-02  6.1671e-03 -3.2427e-02
  7.2338e-03  2.2406e-03 -5.3330e-02

(62,62,.,.) = 
  2.8072e-02 -1.0571e-02 -1.3854e-02
 -1.0879e-02  6.1929e-03 -5.6713e-03
 -2.6083e-02  8.1861e-03 -3.2873e-02

(62,63,.,.) = 
 -3.1032e-02 -6.0485e-02 -2.5583e-02
 -4.6239e-02 -2.2805e-02 -7.7678e-03
 -9.4698e-03  4.0247e-03 -4.8637e-03
     ⋮ 

(63,0 ,.,.) = 
  2.3128e-02 -5.6038e-02 -3.4572e-02
  1.0638e-03  5.7929e-02 -7.6970e-03
 -3.0103e-02  3.5573e-02 -1.8143e-02

(63,1 ,.,.) = 
  9.6840e-02 -1.1186e-01 -7.8766e-02
 -1.0444e-01 -1.0851e-01 -1.9553e-01
 -1.1986e-01 -7.1474e-02  3.6750e-02

(63,2 ,.,.) = 
 -2.2194e-02  6.0298e-03  5.6914e-02
 -4.8342e-02  7.8893e-02 -5.1026e-02
 -5.1294e-02 -5.7434e-02 -1.9178e-02
   ...

(63,61,.,.) = 
 -4.4896e-02 -8.1267e-02  5.1794e-02
 -8.3985e-02 -5.7778e-02  6.7891e-02
  2.3837e-02  3.8954e-02  4.1141e-02

(63,62,.,.) = 
  4.6446e-03  2.7367e-02 -2.3154e-02
  2.0675e-02  2.3429e-02  6.4380e-04
 -5.2222e-02 -1.4854e-02 -2.5150e-02

(63,63,.,.) = 
  2.1291e-02  1.2736e-02  8.4553e-03
 -8.2932e-02  7.2067e-02  1.3107e-01
  8.5491e-03  1.3677e-01  3.9867e-02
[torch.FloatTensor of size 64x64x3x3]
), (u'layer1.1.bn2.running_mean', 
-0.0555
-0.2037
 0.7682
-0.0659
 0.4746
-0.0462
-0.0896
 0.0405
-0.2446
-0.3079
 0.2418
-0.0135
-0.0139
-0.5716
 0.1631
-0.1234
-0.0607
-0.0682
 0.0326
 0.0245
-0.1008
 0.0646
 0.0028
-0.0101
-0.0145
 0.0377
-0.0842
 0.0183
-0.5056
-0.0529
-0.0573
-0.1212
-0.3578
-0.2472
-0.3403
 0.0570
-0.2512
-0.2658
-0.1210
-0.0369
-0.0996
 0.2838
 0.1478
-0.1105
-0.4597
-0.1867
-0.2858
 0.1237
-0.1291
-0.2389
 0.0203
 0.1081
-0.2310
-0.0848
-0.0316
 0.2546
 0.0597
-0.1729
-0.0190
 0.1898
 0.0823
 0.0380
-0.0429
 0.1392
[torch.FloatTensor of size 64]
), (u'layer1.1.bn2.running_var', 
 0.0485
 0.1034
 0.0663
 0.0458
 0.1147
 0.0534
 0.0654
 0.0467
 0.0442
 0.0820
 0.0332
 0.0400
 0.0379
 0.0849
 0.0409
 0.0282
 0.0821
 0.0699
 0.0327
 0.0497
 0.0506
 0.1060
 0.0921
 0.0300
 0.0170
 0.0383
 0.0358
 0.0383
 0.0745
 0.0579
 0.0390
 0.0504
 0.0494
 0.0617
 0.0458
 0.0347
 0.0525
 0.0575
 0.0475
 0.0354
 0.0658
 0.0336
 0.0437
 0.0734
 0.0574
 0.0596
 0.0452
 0.0403
 0.0789
 0.0551
 0.0328
 0.0775
 0.0722
 0.0390
 0.0501
 0.0394
 0.0454
 0.0450
 0.0899
 0.0297
 0.0527
 0.0184
 0.0526
 0.0340
[torch.FloatTensor of size 64]
), (u'layer1.1.bn2.weight', Parameter containing:
 0.2560
 0.5690
 0.4042
 0.5130
 0.2178
 0.4940
 0.3315
 0.5510
 0.4354
 0.5291
 0.2081
 0.4735
 0.5945
 0.5645
 0.2761
 0.2571
 0.4853
 0.6240
 0.4370
 0.2308
 0.4970
 0.3157
 0.5706
 0.2162
 0.1932
 0.1448
 0.2218
 0.2389
 0.5871
 0.3501
 0.4109
 0.3199
 0.5808
 0.3281
 0.2723
 0.1971
 0.6139
 0.4075
 0.6304
 0.3874
 0.7605
 0.2111
 0.3071
 0.4603
 0.3099
 0.1914
 0.4431
 0.2537
 0.5745
 0.6459
 0.3914
 0.3090
 0.6782
 0.1937
 0.5814
 0.2570
 0.3514
 0.2124
 0.5794
 0.3415
 0.2051
 0.0715
 0.4090
 0.4416
[torch.FloatTensor of size 64]
), (u'layer1.1.bn2.bias', Parameter containing:
-0.1778
-0.1287
 0.0349
-0.1452
 0.1864
-0.1413
-0.4201
-0.1334
 0.2183
-0.1912
 0.0311
-0.0235
-0.1724
-0.0274
-0.0295
-0.1031
 0.0047
 0.0828
-0.1521
 0.0183
-0.2418
-0.0831
-0.0491
-0.0688
-0.2560
 0.1381
-0.0165
 0.2092
-0.0028
-0.0265
-0.0225
 0.0286
-0.1065
-0.3698
 0.2862
-0.1036
 0.3080
-0.0894
 0.2772
 0.1136
-0.3157
 0.0423
 0.0567
 0.2369
-0.0727
 0.0465
-0.0536
 0.1309
 0.0282
-0.1371
 0.1464
-0.0717
-0.3237
-0.1583
-0.0424
-0.1278
-0.1703
 0.0413
 0.0891
 0.0770
-0.0730
 0.0683
-0.0391
 0.0476
[torch.FloatTensor of size 64]
), (u'layer2.0.conv1.weight', Parameter containing:
( 0 , 0 ,.,.) = 
 -7.1555e-02 -1.1031e-01 -1.3711e-01
  7.0593e-02 -1.4782e-02 -1.0053e-01
  1.1938e-01  8.7330e-02 -8.2206e-03

( 0 , 1 ,.,.) = 
 -2.3999e-02 -6.3682e-03  2.4303e-03
  6.1831e-03  1.8781e-02  2.5324e-02
  2.3656e-03 -4.0037e-03 -1.1949e-02

( 0 , 2 ,.,.) = 
  6.0344e-03  6.3784e-03 -1.2247e-02
  7.8854e-03 -1.3464e-02 -4.2702e-02
  1.7380e-02 -1.3862e-02 -4.7145e-02
    ... 

( 0 ,61 ,.,.) = 
  3.4324e-02  3.2257e-02  2.5819e-02
  8.4676e-03 -4.5413e-04 -1.0832e-02
 -6.7166e-03 -1.5052e-02 -2.6939e-02

( 0 ,62 ,.,.) = 
 -1.2089e-02 -2.3588e-02 -2.2689e-02
  1.0135e-02  1.8285e-02 -1.5695e-02
  2.1352e-02  5.8568e-02  4.2873e-02

( 0 ,63 ,.,.) = 
  1.4421e-02 -2.8298e-02 -7.0770e-03
  3.0260e-02 -6.6294e-03 -1.6901e-02
  3.9085e-02  1.4222e-02  2.2294e-02
      ⋮  

( 1 , 0 ,.,.) = 
 -7.7911e-02 -7.3929e-02 -3.6671e-02
 -3.4903e-02 -6.2355e-02 -3.7793e-02
 -2.8379e-02 -5.4291e-02 -4.9411e-02

( 1 , 1 ,.,.) = 
 -1.2970e-02 -2.1825e-02 -2.8767e-04
  7.6444e-03  1.7653e-02  1.6660e-02
  3.8337e-02  2.3006e-02 -1.6620e-03

( 1 , 2 ,.,.) = 
 -8.7592e-02 -8.4735e-02 -5.5818e-02
 -7.7731e-02 -8.0311e-02 -3.2554e-02
 -5.6313e-02 -4.2047e-02  1.5247e-02
    ... 

( 1 ,61 ,.,.) = 
 -3.2377e-02 -4.0018e-02 -2.9523e-02
 -1.5294e-02 -1.4165e-02  2.7086e-03
  1.1652e-02  2.3886e-02  2.4413e-02

( 1 ,62 ,.,.) = 
  2.0891e-03 -3.0475e-02 -3.3818e-02
  6.7829e-03  3.8681e-04 -1.4540e-02
 -3.1306e-03  6.7689e-03  8.4524e-03

( 1 ,63 ,.,.) = 
  3.0586e-02  4.6281e-02  3.8359e-04
  5.3079e-02  6.7488e-02  3.0547e-02
  2.3374e-02  4.3993e-02 -3.8713e-03
      ⋮  

( 2 , 0 ,.,.) = 
  1.3878e-02  3.2724e-02  4.6584e-02
 -8.0647e-03  1.6209e-03  1.5153e-02
 -7.0342e-02 -5.3299e-02 -4.5920e-02

( 2 , 1 ,.,.) = 
  4.6035e-02  3.5400e-02  3.4941e-02
  5.8351e-02  5.4640e-02  2.7162e-02
  2.6799e-02  4.5056e-02  6.6886e-03

( 2 , 2 ,.,.) = 
 -3.3766e-02 -3.8605e-02 -2.4172e-02
 -1.8285e-03  1.0888e-02  1.1425e-02
  2.2282e-02  1.4024e-02  3.6332e-03
    ... 

( 2 ,61 ,.,.) = 
 -1.6330e-02 -6.9552e-02 -8.9737e-02
  3.9766e-02  1.5501e-02 -2.2695e-02
  1.0290e-01  1.2294e-01  6.3867e-02

( 2 ,62 ,.,.) = 
 -4.2318e-03  4.9511e-02 -7.6289e-03
 -2.7720e-02  7.0398e-03 -9.4052e-03
 -6.7008e-02 -6.0542e-02 -2.5967e-02

( 2 ,63 ,.,.) = 
 -5.8560e-03 -1.7573e-02 -3.8016e-02
  2.8579e-03 -4.1603e-03  1.0113e-02
  2.6243e-02  3.5200e-02  3.1143e-02
...     
      ⋮  

(125, 0 ,.,.) = 
 -4.4193e-02 -6.5322e-02 -1.7594e-02
 -9.3970e-02 -5.8291e-02  1.2093e-02
 -2.2998e-02  3.2463e-02  7.1731e-02

(125, 1 ,.,.) = 
 -4.7220e-03 -3.0125e-03 -1.8075e-02
  1.2667e-02 -8.0509e-03 -1.4605e-02
  7.8220e-03 -1.0720e-02 -2.6515e-02

(125, 2 ,.,.) = 
 -2.5299e-02 -4.9383e-02 -1.2720e-02
 -5.2206e-02 -4.7233e-02 -4.2470e-03
 -4.8697e-02 -2.5320e-02  8.6178e-03
    ... 

(125,61 ,.,.) = 
 -3.7617e-03  7.8398e-03 -5.9525e-03
  4.0277e-03  7.3575e-03 -1.1667e-02
 -3.9997e-02 -3.8038e-02 -5.0469e-02

(125,62 ,.,.) = 
 -3.8949e-03 -6.8965e-03  3.4102e-02
 -6.9814e-03 -4.9762e-02  5.8711e-02
  1.8361e-02  2.5874e-02  8.0028e-02

(125,63 ,.,.) = 
 -3.3014e-02 -2.1510e-02 -2.1509e-03
 -4.3894e-02 -3.2009e-02 -1.6265e-02
 -1.1037e-02  2.8872e-04  3.0937e-02
      ⋮  

(126, 0 ,.,.) = 
 -4.9907e-02 -5.0222e-02 -5.0985e-02
  2.2644e-02 -1.4098e-02 -2.4426e-02
  1.9960e-02  9.6426e-02  1.0580e-01

(126, 1 ,.,.) = 
 -3.6873e-02  2.1413e-03  8.3469e-03
 -4.0796e-02 -3.3767e-02 -3.4955e-02
  3.9466e-02  7.0508e-02  8.6065e-02

(126, 2 ,.,.) = 
  1.4842e-02  6.6914e-03  1.4324e-02
 -3.2621e-02 -4.4027e-02 -2.2269e-02
  7.1982e-03 -1.9187e-02 -4.9348e-03
    ... 

(126,61 ,.,.) = 
 -4.9938e-03  1.6018e-02  1.1242e-02
 -4.7668e-03  2.1921e-02  2.2660e-02
 -2.6753e-02  2.6917e-04 -5.6827e-03

(126,62 ,.,.) = 
 -8.7725e-03  1.0761e-02  7.3603e-03
 -1.8010e-05 -1.7926e-02  4.8229e-03
  4.2431e-02 -1.5764e-02  2.3554e-02

(126,63 ,.,.) = 
 -1.3830e-02 -3.0793e-03 -4.0854e-03
  3.3363e-02  4.2952e-02  3.5867e-02
 -3.9653e-02 -3.0855e-02 -4.3189e-02
      ⋮  

(127, 0 ,.,.) = 
 -3.8617e-02 -3.1549e-03  2.5739e-03
 -1.1592e-02  9.8761e-03  7.5235e-03
 -1.9339e-02 -9.8779e-03  2.1755e-03

(127, 1 ,.,.) = 
  1.6889e-04  1.8302e-03 -8.9537e-03
  5.8343e-03  1.7360e-02 -1.9029e-02
  5.8642e-03 -7.4307e-04  1.4667e-03

(127, 2 ,.,.) = 
 -1.6506e-02 -2.8401e-02  1.3986e-02
 -2.2922e-02 -4.3484e-02  1.0471e-02
 -2.5801e-03 -4.5258e-02  7.9791e-03
    ... 

(127,61 ,.,.) = 
 -1.5260e-03 -7.6469e-03  1.3597e-02
  5.5301e-04 -2.9176e-03  2.2147e-02
  3.2763e-03 -1.0775e-05  1.3163e-02

(127,62 ,.,.) = 
  5.1756e-03  1.8495e-02 -8.0268e-03
 -3.5030e-02  2.6403e-02 -7.1220e-03
 -5.2325e-02 -1.1185e-02  1.9146e-02

(127,63 ,.,.) = 
 -6.8805e-02  5.1618e-02  1.9787e-02
  2.5533e-02 -6.1926e-02  4.9924e-02
  1.0532e-01 -4.4136e-02  4.9907e-02
[torch.FloatTensor of size 128x64x3x3]
), (u'layer2.0.bn1.running_mean', 
 0.1502
 0.3009
-0.1475
-0.1210
-0.5701
-0.7525
 0.0232
-0.1191
-0.5203
-0.0344
 0.1527
-0.8009
-0.2133
-0.1956
-0.4503
-0.2632
 0.0839
-1.3614
 0.3520
 0.0435
-0.5124
-0.4489
 0.3674
-0.7865
-0.0061
-0.5502
-0.2629
-0.0697
-0.3892
 0.8596
-0.0261
 0.0194
-1.4822
 0.2077
 0.0741
-0.5370
 0.6348
 0.0066
-0.6156
-0.6373
-0.2649
 0.3021
-0.6140
-0.8625
-1.1688
-0.2691
-0.7569
-0.7104
-0.5601
-0.3803
-0.6424
-0.5653
-0.3943
-0.8532
-0.8817
-0.5444
-0.2364
-0.2572
-0.0131
-1.1256
 0.2372
-0.2265
-0.1682
-0.7450
-0.8640
 0.2118
 0.1918
 0.5058
 0.0755
-0.6975
-0.7518
 0.5799
-0.2933
-0.0071
-0.6256
-0.2616
-0.6733
-1.1375
 0.1193
-0.4987
-0.6461
-0.0576
 0.0361
 0.0026
-1.1884
 0.2901
-0.7978
-0.2888
 0.7106
-0.6718
-0.3914
 0.3720
-0.4927
-0.5238
-0.0162
-0.5074
-0.3267
-1.2319
-0.1927
-0.1273
 0.3230
-0.0156
-0.1317
-0.6099
-0.0179
-0.3003
-0.1247
 0.1452
-0.4937
-0.4852
-0.3357
-0.3261
-0.3776
-0.3691
-0.6458
-0.3323
-0.0424
-0.2551
-0.6557
-0.2917
 0.5345
-0.4286
 0.1585
-0.3547
-0.1262
-1.0521
-0.2490
-0.2917
[torch.FloatTensor of size 128]
), (u'layer2.0.bn1.running_var', 
 0.5933
 0.5225
 0.9587
 1.2984
 0.6954
 0.5495
 0.7123
 0.7396
 0.4001
 0.5929
 0.4880
 0.6532
 0.5901
 0.5786
 0.5031
 0.6984
 0.6699
 0.3613
 0.6258
 0.5226
 0.6306
 0.6908
 0.4390
 0.7955
 0.8504
 0.8891
 0.4963
 0.7665
 0.9027
 0.6111
 0.4632
 0.4609
 0.8053
 0.4621
 0.5438
 0.6401
 0.6203
 0.6133
 0.6070
 0.6558
 0.5315
 0.2684
 0.1446
 0.5651
 0.7784
 0.6977
 0.4379
 0.6246
 0.7749
 0.7301
 0.5099
 0.6298
 0.5608
 0.7794
 0.6851
 0.6257
 1.0322
 0.7427
 0.9320
 0.3659
 0.7492
 0.5316
 0.6421
 1.2247
 0.6555
 0.7807
 0.7130
 0.5728
 0.4848
 0.6181
 0.6428
 0.5033
 0.6044
 0.6865
 0.6463
 0.6181
 0.5878
 0.6709
 0.8211
 0.5813
 0.6612
 0.6009
 0.6994
 0.5487
 0.3528
 0.4863
 0.7886
 0.6114
 0.3858
 0.6698
 0.4507
 0.7751
 0.5016
 0.5925
 1.1193
 0.7031
 0.5847
 0.4395
 0.6343
 0.5480
 0.6623
 0.7094
 0.5908
 0.8719
 1.1220
 0.7039
 0.6290
 0.4964
 0.7137
 0.6734
 0.4282
 0.7129
 0.5942
 0.7962
 0.6300
 0.9883
 0.6343
 0.7726
 0.6982
 0.6926
 0.6692
 0.7207
 0.4516
 0.6805
 0.5262
 0.4744
 0.7139
 0.6144
[torch.FloatTensor of size 128]
), (u'layer2.0.bn1.weight', Parameter containing:
 0.3248
 0.3613
 0.2960
 0.2913
 0.3407
 0.3435
 0.3049
 0.3308
 0.3447
 0.3860
 0.3196
 0.2622
 0.2994
 0.2189
 0.2397
 0.3744
 0.3555
 0.1948
 0.3349
 0.2159
 0.3349
 0.3454
 0.3094
 0.3769
 0.3546
 0.3267
 0.3178
 0.3272
 0.3832
 0.2585
 0.2973
 0.3481
 0.2827
 0.2995
 0.3451
 0.3471
 0.3440
 0.3344
 0.3211
 0.3180
 0.2940
 0.3353
 0.3253
 0.3733
 0.3198
 0.2987
 0.1620
 0.3262
 0.3271
 0.3410
 0.3693
 0.3320
 0.3357
 0.2951
 0.3115
 0.3185
 0.3139
 0.2633
 0.3089
 0.3601
 0.2734
 0.3433
 0.3335
 0.3288
 0.2706
 0.2879
 0.3318
 0.3310
 0.3170
 0.2977
 0.3300
 0.3216
 0.3205
 0.3231
 0.3481
 0.3130
 0.2826
 0.2856
 0.3279
 0.3666
 0.3288
 0.3575
 0.3377
 0.2904
 0.3273
 0.3214
 0.3332
 0.3452
 0.1842
 0.3916
 0.3337
 0.2325
 0.3285
 0.3358
 0.2885
 0.3149
 0.3288
 0.2236
 0.3159
 0.2993
 0.3403
 0.3220
 0.3171
 0.2950
 0.2847
 0.3224
 0.3119
 0.2613
 0.3374
 0.3333
 0.3330
 0.2959
 0.4087
 0.2192
 0.2982
 0.4006
 0.3081
 0.3171
 0.2862
 0.2952
 0.3070
 0.3583
 0.3232
 0.3345
 0.3453
 0.3043
 0.3327
 0.3337
[torch.FloatTensor of size 128]
), (u'layer2.0.bn1.bias', Parameter containing:
-0.0589
-0.1686
-0.0206
 0.0027
-0.0955
-0.1048
 0.0349
-0.0885
-0.2053
-0.1764
-0.1224
-0.0364
-0.0785
 0.2088
-0.0403
-0.1820
-0.1076
 0.2989
-0.0570
 0.2064
-0.0921
-0.1376
-0.1304
-0.1193
-0.1006
-0.0380
-0.1108
-0.0477
-0.1087
 0.1581
-0.1123
-0.1584
 0.0976
-0.0430
-0.1349
-0.1189
-0.0986
-0.0479
-0.0837
-0.0720
-0.0836
-0.2442
-0.3376
-0.2124
-0.0693
-0.0651
 0.4979
-0.0811
-0.1021
-0.0788
-0.1802
-0.1011
-0.1090
-0.0617
-0.0856
-0.0495
-0.0370
 0.0023
-0.0508
-0.2430
 0.0009
-0.1525
-0.0963
-0.0516
-0.0473
 0.0884
-0.1028
-0.0907
-0.1086
-0.0379
-0.1030
-0.1609
-0.0903
-0.0898
-0.1282
-0.0830
-0.0186
-0.0232
-0.0045
-0.2131
-0.1431
-0.1391
-0.1303
-0.0568
-0.1862
-0.1209
-0.0340
-0.1181
 0.2298
-0.2085
-0.1335
 0.1418
-0.0891
-0.1273
 0.0107
-0.1029
-0.1025
 0.1562
-0.0937
-0.0657
-0.1245
-0.0451
-0.0707
-0.0447
 0.0715
-0.0484
-0.0312
-0.0437
-0.0927
-0.1465
-0.1151
-0.0183
-0.1927
 0.2491
 0.0300
-0.1310
-0.0468
-0.0851
-0.0421
-0.0413
-0.0457
-0.1433
-0.0981
-0.1046
-0.1315
-0.1249
-0.0982
-0.0961
[torch.FloatTensor of size 128]
), (u'layer2.0.conv2.weight', Parameter containing:
( 0 , 0 ,.,.) = 
 -7.4379e-03 -9.8091e-03  2.7976e-03
 -1.0780e-02  2.5794e-02  4.5517e-02
 -2.7241e-02  5.3206e-03  1.3177e-02

( 0 , 1 ,.,.) = 
  3.5440e-02  2.5101e-02  7.8204e-03
  4.0312e-03  1.9894e-02  2.7449e-02
  3.5329e-02  3.5456e-02  1.3315e-02

( 0 , 2 ,.,.) = 
  1.9270e-02 -2.1333e-02 -3.6199e-02
 -1.9590e-02 -1.8873e-02 -5.9538e-02
 -2.1838e-02 -7.6875e-03  3.9487e-03
    ... 

( 0 ,125,.,.) = 
 -6.8038e-03  1.0841e-02 -3.7045e-03
  1.3479e-02  1.1362e-02 -1.3431e-03
  8.1422e-03  1.9292e-04  5.5109e-04

( 0 ,126,.,.) = 
  7.6939e-03  7.7306e-03  4.3960e-03
 -1.0202e-02 -1.1698e-02 -9.6343e-03
 -3.9049e-03  1.8147e-02  1.3297e-02

( 0 ,127,.,.) = 
  1.2434e-02 -2.6889e-02 -1.1974e-02
  2.6846e-02  2.6409e-02 -2.1473e-02
  1.2892e-02  2.7632e-03 -5.4267e-03
      ⋮  

( 1 , 0 ,.,.) = 
  1.2840e-02  1.8529e-02 -2.6782e-03
 -1.6777e-02 -1.2281e-02  3.5471e-02
 -8.6486e-04  2.4498e-02  1.8152e-02

( 1 , 1 ,.,.) = 
 -6.6870e-03 -2.0710e-02 -1.4421e-02
 -7.3135e-03  4.2568e-02  7.4339e-03
  2.7640e-02  1.5997e-02  1.5939e-02

( 1 , 2 ,.,.) = 
 -2.2903e-02 -2.0577e-02  2.3593e-02
 -2.7524e-02 -5.6073e-02 -6.9899e-02
  2.0502e-02  5.1301e-02  2.1989e-02
    ... 

( 1 ,125,.,.) = 
 -2.7188e-02 -3.8969e-02 -3.9503e-02
 -6.2117e-02 -7.4923e-02 -9.5650e-02
 -6.0467e-02 -7.7697e-02 -7.4620e-02

( 1 ,126,.,.) = 
  2.8663e-02  2.9341e-02  2.8688e-02
  7.9438e-03  4.7108e-02  1.4586e-02
 -1.8200e-03  2.2035e-02  7.3670e-03

( 1 ,127,.,.) = 
  1.5625e-03 -1.6815e-02 -4.6104e-03
 -8.1347e-03 -2.5480e-02 -5.2408e-02
 -9.2823e-03 -9.6452e-04 -3.7804e-02
      ⋮  

( 2 , 0 ,.,.) = 
  4.7439e-03  6.0541e-03 -7.1074e-03
  2.3583e-02 -9.3094e-02 -7.9317e-02
 -7.8970e-03 -5.0526e-02 -1.0469e-02

( 2 , 1 ,.,.) = 
  1.4810e-02  1.6199e-02 -5.1457e-02
  8.5937e-03  8.1354e-03 -4.2865e-02
  9.0780e-02  6.5382e-02  4.3530e-02

( 2 , 2 ,.,.) = 
 -1.3827e-02 -6.3971e-03  8.4965e-03
  1.3832e-02 -1.2413e-02  5.3880e-03
  2.0189e-02 -3.5255e-03  7.9905e-03
    ... 

( 2 ,125,.,.) = 
 -9.2351e-04  1.8478e-02 -3.0603e-02
 -1.7034e-02  5.6756e-03 -4.9061e-02
 -3.2771e-02 -3.7422e-02 -4.5931e-02

( 2 ,126,.,.) = 
 -4.6355e-03  6.9231e-03 -1.0628e-03
 -7.9292e-03 -4.9909e-02  4.2104e-02
 -7.5158e-02 -4.7826e-03 -5.8031e-03

( 2 ,127,.,.) = 
  1.1503e-02 -1.4634e-02  3.7884e-02
  1.4056e-02  4.8553e-02  2.3157e-02
  2.1494e-02 -1.0090e-02  3.3782e-02
...     
      ⋮  

(125, 0 ,.,.) = 
  2.6448e-02  4.0213e-03  7.5348e-03
  6.3626e-02 -3.1986e-02 -1.8433e-03
  2.6220e-02  7.5575e-03  4.9462e-02

(125, 1 ,.,.) = 
 -2.8731e-02 -2.2669e-02 -5.1264e-02
 -2.6000e-02 -4.8740e-02 -1.4003e-02
 -1.7263e-02 -4.1574e-02 -1.1665e-02

(125, 2 ,.,.) = 
 -3.4972e-02  3.5634e-02  3.4700e-02
  1.8265e-02  4.3594e-02 -2.6302e-02
  1.7826e-02  3.5585e-02  1.1340e-02
    ... 

(125,125,.,.) = 
  9.7429e-03 -1.7253e-02 -1.6983e-04
 -1.9886e-02  8.1994e-02  1.2903e-02
 -2.3786e-02 -4.7812e-03  4.8584e-02

(125,126,.,.) = 
 -2.4373e-02 -2.5836e-02 -3.5317e-02
 -2.9582e-02 -9.6624e-02 -5.3546e-02
 -1.5009e-02  5.9241e-03 -1.9719e-02

(125,127,.,.) = 
  6.8366e-03 -3.6779e-02 -2.5541e-02
 -1.1634e-02 -2.3650e-02 -7.8005e-03
  8.6452e-03  7.8958e-03 -1.8926e-02
      ⋮  

(126, 0 ,.,.) = 
  3.2894e-02  2.9690e-02  1.1071e-02
  3.8989e-02 -8.9897e-03  2.2632e-02
  7.8374e-03 -2.7959e-02 -2.3005e-02

(126, 1 ,.,.) = 
  1.3667e-02  2.2886e-02 -1.8989e-02
  2.7104e-03  1.1235e-02  7.4223e-03
  2.1089e-02  4.3557e-02  1.0752e-02

(126, 2 ,.,.) = 
 -2.3662e-02  2.2110e-02  4.3471e-04
 -3.0925e-02  6.0868e-02  1.6691e-02
 -8.8467e-02 -8.3442e-02 -3.4247e-02
    ... 

(126,125,.,.) = 
 -7.3418e-03 -1.9690e-02  1.7969e-03
  7.2727e-03 -3.4322e-02 -2.4270e-02
 -1.1512e-02 -6.0470e-02 -5.5070e-02

(126,126,.,.) = 
  3.0219e-03  2.6285e-03  1.7110e-02
 -1.3418e-02 -8.5859e-03  9.0284e-03
  1.9504e-02  9.4355e-03  4.5180e-03

(126,127,.,.) = 
  1.3674e-03  7.6213e-04  1.1925e-02
 -2.3910e-03 -1.0733e-02  1.2625e-02
 -5.0613e-03 -5.7724e-03 -1.4643e-02
      ⋮  

(127, 0 ,.,.) = 
 -7.4213e-03  1.1754e-02 -4.2728e-02
  1.6309e-03 -4.5691e-02 -1.3976e-01
 -6.5419e-03 -2.0547e-03 -4.8392e-02

(127, 1 ,.,.) = 
  7.5053e-03  5.2659e-02  3.8849e-02
 -1.2484e-02  8.4685e-02  6.2233e-03
  1.3136e-03 -1.9656e-02 -8.2167e-02

(127, 2 ,.,.) = 
 -2.4916e-02  1.6551e-02  1.6914e-02
  8.6507e-03  2.1444e-02  1.1694e-02
 -9.0502e-04  3.0596e-02  1.3600e-02
    ... 

(127,125,.,.) = 
 -7.8114e-03  2.2029e-02 -1.7545e-02
 -7.5889e-03 -2.1149e-02 -3.6984e-03
  1.2622e-02 -2.0709e-02 -5.3862e-03

(127,126,.,.) = 
  3.0152e-02 -8.2268e-03 -6.4910e-02
 -2.3752e-02 -9.5375e-02 -5.3019e-02
 -1.6835e-02 -1.1071e-02  9.9055e-04

(127,127,.,.) = 
 -2.4533e-02 -8.4685e-02  2.5065e-02
  1.0639e-02  3.8693e-02  1.4004e-01
  1.5497e-02 -9.5081e-03  4.0948e-03
[torch.FloatTensor of size 128x128x3x3]
), (u'layer2.0.bn2.running_mean', 
-0.4532
-0.1524
-0.3771
-0.0713
-0.2878
-0.1534
-0.5443
-0.1878
-0.2956
-0.0365
-0.0336
-0.1475
 0.0068
-0.1377
-0.1417
-0.3703
-0.4644
-0.1248
 0.4767
 0.0385
-0.3257
-0.1539
-0.3181
-0.1037
 0.0639
-0.2066
-0.1608
 0.0557
 0.1252
-0.3812
-0.2301
-0.1256
-0.2842
-0.0949
-0.3629
-0.1013
 0.3173
-0.1264
-0.1660
-0.1444
-0.9475
-1.0992
-0.0125
-0.0690
 0.1497
-0.3284
 0.0886
-0.3466
-0.2630
-0.1583
-0.3092
-0.0368
-0.0169
-0.3435
-0.3742
-0.2488
-0.1078
-0.3069
-0.1010
 0.1655
-0.4201
-0.2702
-0.1342
-0.0495
-0.4643
-0.2271
-0.4530
-0.0365
-0.4531
-0.0485
 0.0403
-0.0798
-0.0885
-0.1399
-0.5255
 0.0254
-0.1210
-0.2685
-0.1447
-0.1114
-0.5782
-0.3445
-0.0098
-0.8503
-0.0380
-0.2450
-0.0705
-0.1167
-0.1946
-0.3769
-0.5091
 0.2355
-0.1791
-0.2465
-0.2035
-0.3560
 0.0100
-0.2061
-0.0407
-0.6231
-0.0431
-0.2874
-0.3627
-0.1486
-0.0271
-0.3714
 0.1313
-0.1827
-0.2294
-0.0660
-0.0431
-0.9597
 0.0849
-0.0855
-0.3286
-0.9559
-0.1640
-0.0745
 0.1040
-0.3808
-0.4664
 0.0823
-0.2148
-0.3367
-0.0775
-0.1677
-0.0668
-0.1016
[torch.FloatTensor of size 128]
), (u'layer2.0.bn2.running_var', 
 0.0481
 0.0571
 0.0619
 0.0319
 0.0896
 0.0538
 0.0606
 0.1026
 0.0445
 0.1045
 0.0477
 0.0751
 0.0312
 0.0500
 0.0453
 0.0511
 0.0846
 0.0792
 0.1995
 0.0590
 0.0555
 0.0877
 0.0545
 0.0825
 0.0511
 0.1046
 0.0602
 0.0467
 0.0575
 0.0667
 0.0973
 0.0930
 0.0601
 0.0702
 0.0693
 0.0347
 0.1059
 0.0404
 0.0449
 0.2404
 0.1996
 0.1850
 0.0337
 0.0491
 0.0327
 0.0976
 0.0398
 0.0999
 0.0879
 0.0753
 0.0368
 0.0639
 0.1159
 0.0487
 0.1282
 0.0614
 0.0541
 0.0333
 0.0908
 0.0726
 0.0490
 0.0751
 0.0646
 0.0694
 0.1447
 0.1111
 0.1868
 0.0648
 0.0639
 0.0538
 0.0637
 0.0589
 0.0643
 0.1066
 0.1363
 0.0845
 0.0670
 0.1007
 0.0361
 0.0741
 0.0437
 0.0776
 0.0721
 0.0685
 0.0612
 0.0608
 0.0688
 0.1067
 0.0610
 0.0797
 0.0385
 0.0575
 0.0512
 0.0672
 0.0229
 0.0898
 0.0729
 0.0448
 0.0379
 0.2440
 0.0769
 0.0878
 0.0522
 0.0541
 0.0225
 0.0741
 0.1303
 0.0576
 0.0836
 0.0499
 0.0524
 0.1636
 0.0871
 0.0577
 0.0498
 0.1113
 0.0679
 0.0683
 0.0465
 0.0505
 0.1792
 0.0842
 0.0414
 0.0971
 0.0470
 0.0575
 0.0490
 0.0455
[torch.FloatTensor of size 128]
), (u'layer2.0.bn2.weight', Parameter containing:
 0.1454
 0.3270
 0.3113
 0.2538
 0.4086
 0.3937
 0.4400
 0.3108
 0.3406
 0.2168
 0.2170
 0.3857
 0.1971
 0.2692
 0.1663
 0.2454
 0.3232
 0.3686
 0.3893
 0.3264
 0.3875
 0.4707
 0.1958
 0.4717
 0.1673
 0.3938
 0.3044
 0.1929
 0.2175
 0.2119
 0.4230
 0.3683
 0.2455
 0.2229
 0.3370
 0.3229
 0.2688
 0.3557
 0.2581
 0.4031
 0.4492
 0.3642
 0.2599
 0.1881
 0.1359
 0.2958
 0.1913
 0.3065
 0.3981
 0.4102
 0.1874
 0.4516
 0.3340
 0.1628
 0.3599
 0.1624
 0.2886
 0.1358
 0.4491
 0.2694
 0.4823
 0.3393
 0.4764
 0.3155
 0.6005
 0.4654
 0.5264
 0.2991
 0.2992
 0.4621
 0.2614
 0.4247
 0.4662
 0.4249
 0.3345
 0.2655
 0.4048
 0.3605
 0.1782
 0.3833
 0.2823
 0.3843
 0.3307
 0.2151
 0.3317
 0.1458
 0.2771
 0.4917
 0.3199
 0.4222
 0.1559
 0.4884
 0.3267
 0.3440
 0.1608
 0.4855
 0.2677
 0.1616
 0.3221
 0.4243
 0.3661
 0.1893
 0.3400
 0.3648
 0.1779
 0.3544
 0.2852
 0.2437
 0.4472
 0.3011
 0.3997
 0.6173
 0.2794
 0.4867
 0.1502
 0.6021
 0.3604
 0.4696
 0.3711
 0.2388
 0.5347
 0.1509
 0.3213
 0.4394
 0.3229
 0.4329
 0.1489
 0.3702
[torch.FloatTensor of size 128]
), (u'layer2.0.bn2.bias', Parameter containing:
 0.0246
 0.0593
 0.1347
-0.1089
-0.0470
-0.1359
-0.0550
 0.0509
-0.0613
 0.0916
 0.0031
-0.0274
-0.0539
 0.0177
 0.0432
 0.0074
 0.0548
-0.0321
-0.0224
 0.0142
-0.2150
-0.1160
 0.0486
-0.1141
 0.1066
 0.0355
 0.0140
 0.0177
 0.0781
 0.1331
 0.0139
 0.0447
 0.1063
 0.0528
-0.0539
-0.1160
 0.1055
-0.1591
 0.0100
 0.1197
 0.0170
 0.0929
-0.0675
 0.0987
 0.1034
 0.0501
 0.0297
 0.0281
-0.0075
-0.0577
-0.0144
-0.1640
 0.1255
 0.0817
 0.0635
 0.0936
 0.0213
 0.0486
-0.1174
 0.0237
-0.2177
 0.0099
-0.1883
 0.0467
-0.0829
 0.0585
-0.0306
 0.0509
 0.0541
-0.1671
 0.0115
-0.0302
-0.1393
 0.0115
 0.0428
 0.1189
-0.1289
 0.0479
 0.0474
-0.0625
 0.0009
-0.0144
 0.0909
 0.1342
-0.0338
 0.0560
 0.0848
-0.0467
 0.0228
-0.0097
 0.1360
-0.2625
 0.0088
-0.0553
 0.0383
-0.0720
 0.0907
 0.1612
-0.1076
 0.1011
-0.0519
 0.0838
-0.0704
-0.0806
-0.0243
 0.0533
 0.1277
 0.1403
-0.0593
-0.0639
-0.0766
-0.1163
 0.0661
-0.1644
 0.0422
-0.2786
-0.1006
-0.0696
-0.0761
 0.0371
-0.0247
 0.0916
-0.0200
-0.0176
 0.0298
-0.0373
 0.0466
-0.1371
[torch.FloatTensor of size 128]
), (u'layer2.0.downsample.0.weight', Parameter containing:
( 0 , 0 ,.,.) = 
  1.5916e-02

( 0 , 1 ,.,.) = 
 -3.1090e-01

( 0 , 2 ,.,.) = 
  1.2615e-02
    ... 

( 0 ,61 ,.,.) = 
 -1.6723e-01

( 0 ,62 ,.,.) = 
  1.2692e-02

( 0 ,63 ,.,.) = 
  1.3152e-02
      ⋮  

( 1 , 0 ,.,.) = 
  3.5526e-03

( 1 , 1 ,.,.) = 
 -1.0868e-03

( 1 , 2 ,.,.) = 
 -8.2883e-03
    ... 

( 1 ,61 ,.,.) = 
 -2.3444e-02

( 1 ,62 ,.,.) = 
 -7.5592e-02

( 1 ,63 ,.,.) = 
 -1.2622e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -4.1898e-02

( 2 , 1 ,.,.) = 
  7.9478e-03

( 2 , 2 ,.,.) = 
 -1.6623e-01
    ... 

( 2 ,61 ,.,.) = 
  3.1887e-02

( 2 ,62 ,.,.) = 
 -1.8766e-02

( 2 ,63 ,.,.) = 
  6.4507e-02
...     
      ⋮  

(125, 0 ,.,.) = 
 -2.8725e-02

(125, 1 ,.,.) = 
  4.7026e-02

(125, 2 ,.,.) = 
 -5.2251e-02
    ... 

(125,61 ,.,.) = 
 -4.7365e-02

(125,62 ,.,.) = 
  5.8639e-02

(125,63 ,.,.) = 
  5.8808e-02
      ⋮  

(126, 0 ,.,.) = 
 -7.7884e-03

(126, 1 ,.,.) = 
 -2.0288e-02

(126, 2 ,.,.) = 
  5.6392e-02
    ... 

(126,61 ,.,.) = 
  7.8023e-01

(126,62 ,.,.) = 
 -2.2917e-03

(126,63 ,.,.) = 
 -2.5941e-02
      ⋮  

(127, 0 ,.,.) = 
 -2.8316e-02

(127, 1 ,.,.) = 
 -1.3194e-02

(127, 2 ,.,.) = 
 -5.1356e-02
    ... 

(127,61 ,.,.) = 
  2.3552e-02

(127,62 ,.,.) = 
 -6.7667e-02

(127,63 ,.,.) = 
  2.6754e-02
[torch.FloatTensor of size 128x64x1x1]
), (u'layer2.0.downsample.1.running_mean', 
-0.2113
 0.1359
 0.0039
 0.0886
-0.0546
-0.2716
 0.2521
-0.2035
 0.0303
-0.1464
-0.2640
-0.4436
-0.3815
-0.1463
 0.0573
-0.2120
-0.0665
 0.2438
 0.0832
 0.0040
-0.2136
-0.1755
-0.7201
-0.2233
 0.1047
 0.1467
-0.3165
-0.2010
 0.2569
-0.8141
-0.0867
-0.0875
-0.9794
-0.2197
-0.0568
-0.3848
 0.2579
 0.1735
-0.0528
 0.3276
-0.4380
 0.1895
-0.1316
-0.3101
-0.2862
-0.0167
-0.2216
-0.1930
 0.0454
-0.3049
 0.1863
-0.5461
 0.0461
 0.1899
-0.0353
-0.2415
 0.0813
 0.4788
 0.0519
 0.0438
 0.1379
-0.4036
-0.1231
 0.0551
-0.0663
 0.1699
-0.3095
-0.1080
-0.1431
 0.2339
-0.2893
 0.3513
 0.1893
-0.0789
-0.5882
-0.1365
-0.2919
 0.2869
 0.3085
-0.1096
 0.3905
-0.2630
-0.2150
-0.1966
-0.2579
-0.0904
 0.0506
-0.0275
 0.4067
 0.0970
-0.3976
 0.2176
 0.2585
 0.1078
-0.2607
-0.1126
-0.2001
-0.4400
-0.1181
 0.2168
-0.1290
-0.1434
 0.2498
-0.2811
-0.2768
-0.5209
 0.1785
 0.1161
-0.1806
-0.1448
-0.0704
-0.3591
-0.4581
-0.1117
-0.1916
 0.7261
-0.2382
 0.0126
 0.0749
-0.0097
 0.0480
 0.9940
 0.0634
 0.0629
-0.7954
-0.1612
 1.3040
-0.2879
[torch.FloatTensor of size 128]
), (u'layer2.0.downsample.1.running_var', 
 0.1951
 0.0151
 0.0247
 0.0691
 0.0665
 0.0386
 0.0292
 0.1873
 0.0476
 0.0859
 0.1065
 0.0916
 0.1233
 0.0595
 0.1220
 0.0878
 0.0620
 0.0835
 0.1198
 0.0264
 0.1417
 0.0151
 0.0808
 0.0223
 0.1227
 0.0093
 0.1094
 0.1057
 0.1190
 0.1483
 0.0764
 0.0185
 0.0642
 0.2118
 0.1243
 0.0555
 0.0427
 0.0556
 0.1126
 0.0959
 0.0943
 0.1135
 0.0661
 0.0704
 0.1229
 0.1406
 0.0859
 0.0672
 0.0138
 0.1057
 0.1114
 0.0589
 0.0269
 0.0969
 0.0489
 0.1290
 0.0768
 0.0935
 0.0215
 0.1296
 0.0122
 0.0591
 0.0583
 0.0216
 0.0135
 0.0106
 0.0342
 0.0199
 0.0566
 0.0168
 0.0640
 0.0537
 0.0322
 0.0318
 0.0584
 0.0361
 0.0155
 0.0159
 0.0949
 0.0965
 0.0927
 0.0331
 0.0240
 0.1121
 0.0693
 0.2177
 0.0251
 0.0650
 0.0345
 0.0357
 0.1534
 0.0568
 0.0370
 0.0442
 0.0752
 0.0413
 0.0251
 0.0582
 0.0370
 0.1190
 0.0993
 0.2644
 0.0537
 0.0495
 0.1122
 0.0638
 0.0302
 0.0376
 0.0187
 0.0634
 0.0307
 0.0378
 0.1793
 0.0240
 0.2015
 0.0337
 0.1444
 0.0368
 0.0165
 0.0710
 0.0133
 0.2638
 0.0288
 0.0057
 0.0462
 0.0291
 0.1198
 0.0450
[torch.FloatTensor of size 128]
), (u'layer2.0.downsample.1.weight', Parameter containing:
 0.3334
 0.0581
 0.0715
 0.3442
 0.1756
 0.1509
 0.1568
 0.3100
 0.1927
 0.1516
 0.3044
 0.2238
 0.3706
 0.1739
 0.3051
 0.2610
 0.1575
 0.2015
 0.2933
 0.1010
 0.5871
 0.0676
 0.2499
 0.0929
 0.2443
 0.0495
 0.2449
 0.2750
 0.3071
 0.3025
 0.1818
 0.0688
 0.2223
 0.3766
 0.4661
 0.3284
 0.1035
 0.3400
 0.2325
 0.1514
 0.1753
 0.2269
 0.2606
 0.1831
 0.2894
 0.2590
 0.2208
 0.1399
 0.0643
 0.2833
 0.3451
 0.2017
 0.0696
 0.2722
 0.1127
 0.2917
 0.2358
 0.2703
 0.0911
 0.2591
 0.1302
 0.2261
 0.1967
 0.0539
 0.0697
 0.0524
 0.1050
 0.0861
 0.1173
 0.0957
 0.1862
 0.1642
 0.1336
 0.1065
 0.1312
 0.0888
 0.0793
 0.0475
 0.3049
 0.2325
 0.2908
 0.1292
 0.0778
 0.2263
 0.2379
 0.3405
 0.0914
 0.1936
 0.1223
 0.1400
 0.2953
 0.2360
 0.1681
 0.1338
 0.2666
 0.1495
 0.0761
 0.1674
 0.1784
 0.1720
 0.2318
 0.3753
 0.2103
 0.1922
 0.4002
 0.1718
 0.0593
 0.0742
 0.0686
 0.1931
 0.1386
 0.1111
 0.3055
 0.1205
 0.3443
 0.1633
 0.3673
 0.1534
 0.0742
 0.2088
 0.0394
 0.2594
 0.1385
-0.0051
 0.1905
 0.1275
 0.3071
 0.1682
[torch.FloatTensor of size 128]
), (u'layer2.0.downsample.1.bias', Parameter containing:
 0.0246
 0.0593
 0.1347
-0.1089
-0.0470
-0.1359
-0.0550
 0.0509
-0.0613
 0.0916
 0.0031
-0.0274
-0.0539
 0.0177
 0.0432
 0.0074
 0.0548
-0.0321
-0.0224
 0.0142
-0.2150
-0.1160
 0.0486
-0.1141
 0.1066
 0.0355
 0.0140
 0.0177
 0.0781
 0.1331
 0.0139
 0.0447
 0.1063
 0.0528
-0.0539
-0.1160
 0.1055
-0.1591
 0.0100
 0.1197
 0.0170
 0.0929
-0.0675
 0.0987
 0.1034
 0.0501
 0.0297
 0.0281
-0.0075
-0.0577
-0.0144
-0.1640
 0.1255
 0.0817
 0.0635
 0.0936
 0.0213
 0.0486
-0.1174
 0.0237
-0.2177
 0.0099
-0.1883
 0.0467
-0.0829
 0.0585
-0.0306
 0.0509
 0.0541
-0.1671
 0.0115
-0.0302
-0.1393
 0.0115
 0.0428
 0.1189
-0.1289
 0.0479
 0.0474
-0.0625
 0.0009
-0.0144
 0.0909
 0.1342
-0.0338
 0.0560
 0.0848
-0.0467
 0.0228
-0.0097
 0.1360
-0.2625
 0.0088
-0.0553
 0.0383
-0.0720
 0.0907
 0.1612
-0.1076
 0.1011
-0.0519
 0.0838
-0.0704
-0.0806
-0.0243
 0.0533
 0.1277
 0.1403
-0.0593
-0.0639
-0.0766
-0.1163
 0.0661
-0.1644
 0.0422
-0.2786
-0.1006
-0.0696
-0.0761
 0.0371
-0.0247
 0.0916
-0.0200
-0.0176
 0.0298
-0.0373
 0.0466
-0.1371
[torch.FloatTensor of size 128]
), (u'layer2.1.conv1.weight', Parameter containing:
( 0 , 0 ,.,.) = 
 -9.9023e-04 -7.7429e-03 -7.9740e-03
  2.4844e-02  1.8642e-03  5.8352e-03
  9.5089e-03 -1.6476e-02  3.9157e-03

( 0 , 1 ,.,.) = 
 -2.1488e-02 -1.2330e-03 -1.4281e-02
 -1.7044e-02  9.5922e-03  7.0445e-03
  1.0790e-02 -7.2350e-03 -1.1357e-02

( 0 , 2 ,.,.) = 
 -1.1126e-03  3.0388e-02  2.2247e-02
 -6.1184e-02 -2.3797e-02  2.3747e-03
  4.0678e-02 -1.0356e-01 -6.0011e-02
    ... 

( 0 ,125,.,.) = 
 -8.5833e-03  1.1438e-02  2.0800e-02
 -1.6565e-02 -3.9587e-02  1.2594e-02
 -1.4314e-03 -5.4257e-03  3.6794e-02

( 0 ,126,.,.) = 
 -1.3687e-02 -2.9514e-02 -1.4745e-02
  2.8299e-02  2.2096e-02  3.4839e-03
 -4.3521e-03 -2.6706e-03  1.2258e-04

( 0 ,127,.,.) = 
  7.6403e-03  2.0666e-02  3.7429e-02
  6.9478e-03  4.3983e-02  1.7538e-02
 -9.7797e-03 -2.4789e-02 -1.1349e-03
      ⋮  

( 1 , 0 ,.,.) = 
  8.4439e-02  8.4827e-02 -5.1478e-02
  3.5253e-02 -1.1375e-03 -1.0331e-01
 -6.4078e-02 -1.2660e-01 -1.2952e-01

( 1 , 1 ,.,.) = 
  1.0628e-03 -1.4083e-02  4.7109e-03
 -2.1059e-02 -2.8778e-02  9.9708e-03
  1.4074e-02  1.8691e-02  5.8192e-02

( 1 , 2 ,.,.) = 
  2.2139e-02  8.9027e-03  1.4790e-02
 -1.7497e-02 -5.3924e-03  2.7834e-02
 -1.3855e-02 -1.3346e-02  1.7668e-02
    ... 

( 1 ,125,.,.) = 
 -3.8032e-02 -2.3097e-02 -7.1775e-03
 -3.5089e-02  1.0861e-02  1.3640e-02
  6.3449e-04  9.7476e-03  7.3670e-03

( 1 ,126,.,.) = 
 -4.4184e-02 -1.6190e-02  1.2243e-02
 -4.0349e-02 -1.7894e-02  2.8911e-02
 -6.5176e-03 -1.0490e-02  9.1658e-03

( 1 ,127,.,.) = 
  4.3621e-03  1.3119e-02  1.8442e-03
  1.1555e-02 -1.3031e-02 -9.5657e-03
 -2.3314e-02  1.1609e-03  2.6771e-03
      ⋮  

( 2 , 0 ,.,.) = 
 -2.1180e-02 -6.2213e-03  1.7609e-03
 -4.7424e-03  1.1101e-02  1.1296e-02
 -1.4529e-02  2.9843e-02  2.4383e-03

( 2 , 1 ,.,.) = 
  6.9183e-03  9.2937e-03  3.0078e-02
 -4.2612e-03  4.9560e-03 -4.7338e-03
  3.1360e-02  1.9035e-03 -4.7242e-03

( 2 , 2 ,.,.) = 
 -3.6726e-02  5.7285e-03  1.3919e-01
 -4.2992e-02  9.4023e-04  7.7141e-02
 -5.0050e-02 -4.9479e-03  2.4693e-02
    ... 

( 2 ,125,.,.) = 
  3.7203e-02  7.4712e-03 -4.2659e-02
 -8.1729e-03 -9.2536e-02 -5.4934e-03
 -2.5927e-02  8.3993e-04  7.4632e-02

( 2 ,126,.,.) = 
  1.8076e-02  4.5272e-03 -1.3757e-02
 -1.8939e-02 -3.2739e-02 -2.9666e-02
 -2.0608e-02 -4.6167e-03  1.3080e-03

( 2 ,127,.,.) = 
 -1.2078e-02 -2.0285e-03 -1.6998e-02
 -3.4805e-02 -4.9195e-02 -3.1973e-02
 -2.1021e-02 -5.1164e-03 -4.8522e-03
...     
      ⋮  

(125, 0 ,.,.) = 
  3.1791e-02  2.2948e-02  1.0390e-02
 -1.2628e-02 -2.9320e-03  4.2645e-03
 -2.1707e-02 -1.0856e-02  1.6094e-02

(125, 1 ,.,.) = 
 -1.4525e-03 -1.0131e-02 -4.6862e-04
  2.2130e-02  2.2736e-02  5.0183e-03
 -6.0125e-02 -4.3150e-02 -4.4480e-02

(125, 2 ,.,.) = 
  3.0761e-03  3.4396e-03  6.0877e-03
 -1.3683e-02  4.0576e-03 -2.6544e-02
  6.8231e-02  6.3474e-02 -9.3660e-03
    ... 

(125,125,.,.) = 
  1.8752e-02  1.9400e-02  4.1691e-02
  8.7770e-03  8.2394e-04  1.8619e-02
  1.8796e-02  6.2238e-02 -2.3801e-02

(125,126,.,.) = 
 -2.9788e-02 -3.4598e-02 -2.5225e-02
  8.4234e-03 -2.3222e-02 -9.4612e-03
  6.9035e-03  6.9737e-02 -1.3359e-02

(125,127,.,.) = 
  2.6981e-03 -4.3182e-02 -1.6731e-02
  2.5812e-02 -7.2025e-02 -6.5399e-02
  4.6257e-02  2.9469e-02 -1.5811e-02
      ⋮  

(126, 0 ,.,.) = 
 -2.1079e-02  3.8220e-02  8.3305e-03
 -5.9912e-03  3.5584e-02 -1.7534e-03
  1.8735e-02  7.0859e-03 -3.5151e-03

(126, 1 ,.,.) = 
 -4.5937e-02 -7.4695e-02 -5.3608e-02
 -8.6266e-03  9.0894e-03 -3.0345e-02
 -2.8158e-02 -2.1204e-02 -8.4730e-03

(126, 2 ,.,.) = 
 -7.1772e-02 -6.8582e-02  2.5544e-02
  5.0363e-02  2.5269e-02  5.6668e-02
  2.6238e-03  1.3871e-03 -8.4692e-03
    ... 

(126,125,.,.) = 
 -2.9644e-02  1.0896e-02 -3.0402e-02
  1.5095e-03  5.0455e-02  1.5597e-02
 -2.1015e-02 -1.0757e-02 -3.4942e-02

(126,126,.,.) = 
 -2.7573e-02  2.9707e-02 -2.9490e-02
  2.3301e-03 -3.9011e-02  6.8010e-03
  4.4006e-02  3.5397e-02  7.9087e-02

(126,127,.,.) = 
 -2.7480e-02  5.0337e-02  1.4290e-02
 -5.2482e-02 -4.7748e-03  1.2988e-02
 -1.8935e-02 -3.0808e-02 -1.7583e-02
      ⋮  

(127, 0 ,.,.) = 
  3.2280e-02  4.7408e-02  3.4054e-02
  2.1445e-02  3.8987e-03  4.6985e-04
  1.5159e-02  8.2067e-03  3.2426e-02

(127, 1 ,.,.) = 
  9.2653e-03  2.3661e-02  4.2089e-02
  2.1976e-02  4.6128e-02  1.1402e-02
  7.2843e-03  5.2285e-02  8.6340e-03

(127, 2 ,.,.) = 
  1.4022e-02  1.2800e-02  3.5398e-02
 -4.4398e-02  1.7399e-02 -1.5838e-02
  3.1712e-02  5.8679e-02 -9.3244e-03
    ... 

(127,125,.,.) = 
 -4.8399e-03  7.8628e-03 -5.6169e-04
  8.0402e-03  1.7392e-02  7.8734e-03
 -1.7713e-02 -4.5957e-02 -9.8762e-03

(127,126,.,.) = 
 -9.7569e-03 -7.5795e-03 -2.4627e-02
 -8.2454e-03  6.3065e-02 -3.2954e-03
 -7.7549e-03 -1.3404e-04 -8.1337e-03

(127,127,.,.) = 
  1.7664e-02  1.0114e-02  4.2687e-03
 -3.7950e-03  2.6715e-02  2.0121e-02
  1.6868e-02 -6.6515e-03 -1.1107e-02
[torch.FloatTensor of size 128x128x3x3]
), (u'layer2.1.bn1.running_mean', 
-0.3593
-0.4772
 0.2329
-0.7139
-0.6713
-0.5552
-0.4556
-0.6502
-0.2082
-0.4011
-0.3942
-0.2970
-0.1626
-0.4379
-0.3334
-0.6163
-0.2982
-0.5190
 0.1676
-0.1832
-0.2080
-0.5296
-0.4245
-0.1755
-0.8556
-0.3067
-0.4560
-0.1642
-0.5059
-0.4529
-0.4532
-0.7254
 0.6037
-0.2509
-0.0199
-0.4672
-0.5901
-0.4195
-0.3272
 0.5658
-0.3438
-0.5992
-0.2683
-0.4591
-0.3460
-0.1669
-0.3271
 0.0351
-0.4175
-0.3984
-0.4118
-0.3619
-0.1313
-0.2758
-0.7196
-0.5401
-1.1739
-0.0497
-0.1358
-0.6139
-0.5143
-0.3017
-0.0465
-0.3977
-0.0251
 0.3821
-0.5079
-0.2795
-0.1904
 0.3993
-0.4418
-0.1813
-0.6122
-0.3132
-0.0656
-0.4458
 0.0894
-0.3759
 0.0440
-0.3972
-0.2860
 0.0877
-0.0825
-0.7620
-0.0260
-0.3861
-0.1128
-0.4129
-0.2883
 1.1054
-0.3892
-0.0393
-0.1394
-0.1678
 0.1825
-0.4379
-0.2522
-0.1119
-0.5098
-0.0328
-0.2874
-0.3809
-0.1929
-0.3355
-0.3863
-0.1617
-0.2289
 0.1665
-0.6874
-0.1705
-0.5216
-0.3315
-0.6678
 0.5342
 0.1433
-0.5558
-0.4277
-0.3240
-0.2142
 0.0216
-0.4379
-0.8486
-0.7675
-0.4512
 0.2788
-0.9694
-1.1691
 0.0198
[torch.FloatTensor of size 128]
), (u'layer2.1.bn1.running_var', 
 0.2660
 0.1422
 0.2404
 0.4297
 0.1306
 0.3336
 0.1939
 0.1600
 0.2166
 0.4070
 0.1029
 0.3442
 0.2021
 0.1590
 0.2226
 0.1842
 0.2731
 0.2262
 0.2178
 0.1536
 0.1722
 0.2035
 0.3391
 0.1572
 0.2276
 0.2740
 0.1543
 0.1307
 0.1649
 0.2571
 0.1431
 0.2349
 0.1765
 0.1171
 0.3401
 0.1657
 0.1307
 0.3169
 0.1973
 0.1504
 0.3181
 0.2529
 0.2980
 0.2461
 0.2857
 0.2814
 0.1889
 0.1125
 0.2079
 0.2131
 0.2158
 0.3372
 0.2791
 0.2852
 0.5102
 0.1808
 0.2540
 0.3876
 0.2048
 0.1716
 0.2775
 0.2385
 0.1992
 0.3325
 0.1832
 0.1246
 0.1852
 0.2083
 0.3179
 0.3077
 0.1842
 0.1845
 0.1684
 0.2447
 0.2990
 0.2412
 0.3370
 0.1974
 0.1679
 0.2459
 0.1670
 0.1764
 0.2258
 0.3743
 0.1464
 0.1706
 0.2925
 0.2594
 0.2123
 0.2191
 0.2281
 0.1809
 0.1278
 0.2575
 0.3387
 0.1755
 0.3083
 0.1399
 0.2197
 0.1594
 0.1311
 0.2250
 0.3422
 0.2391
 0.1240
 0.2068
 0.2784
 0.1800
 0.3133
 0.1167
 0.3066
 0.1008
 0.1729
 0.3045
 0.2187
 0.2862
 0.2361
 0.1560
 0.1271
 0.2467
 0.2201
 0.1423
 0.1531
 0.2995
 0.2069
 0.2126
 0.1369
 0.1566
[torch.FloatTensor of size 128]
), (u'layer2.1.bn1.weight', Parameter containing:
 0.3323
 0.2908
 0.3246
 0.3435
 0.3011
 0.3054
 0.3041
 0.3539
 0.2862
 0.3601
 0.2970
 0.3381
 0.2565
 0.3276
 0.3030
 0.4085
 0.3519
 0.4218
 0.3055
 0.2551
 0.3425
 0.3215
 0.3366
 0.2700
 0.2849
 0.3954
 0.3166
 0.3286
 0.3515
 0.3953
 0.2768
 0.3625
 0.1988
 0.2717
 0.3355
 0.2797
 0.2510
 0.3832
 0.3266
 0.3263
 0.3681
 0.3401
 0.3651
 0.3391
 0.3071
 0.3231
 0.3691
 0.2410
 0.3536
 0.3189
 0.3238
 0.3611
 0.3086
 0.3309
 0.3886
 0.4362
 0.4550
 0.2962
 0.3071
 0.3386
 0.3317
 0.3228
 0.2393
 0.3147
 0.2738
 0.3218
 0.3198
 0.3411
 0.3611
 0.2833
 0.3035
 0.3183
 0.3146
 0.3890
 0.2607
 0.3479
 0.3236
 0.3709
 0.2592
 0.3742
 0.2555
 0.2966
 0.3505
 0.3165
 0.2808
 0.2660
 0.2817
 0.4795
 0.3372
 0.2723
 0.2955
 0.3225
 0.2470
 0.3160
 0.3515
 0.3131
 0.3372
 0.2837
 0.3540
 0.2897
 0.2490
 0.3019
 0.3114
 0.3510
 0.3022
 0.3617
 0.2859
 0.2831
 0.3243
 0.2769
 0.3314
 0.2394
 0.2932
 0.2788
 0.2686
 0.3194
 0.3542
 0.2683
 0.2955
 0.2924
 0.3538
 0.4256
 0.3603
 0.3013
 0.2763
 0.4354
 0.3991
 0.2694
[torch.FloatTensor of size 128]
), (u'layer2.1.bn1.bias', Parameter containing:
-0.1735
-0.2337
-0.3383
-0.0806
-0.1920
-0.0621
-0.1885
-0.2830
-0.1680
-0.1796
-0.2645
-0.1983
-0.1183
-0.2432
-0.1706
-0.3090
-0.2661
-0.4040
-0.1949
-0.1392
-0.2449
-0.1242
-0.2012
-0.1901
-0.1014
-0.3468
-0.2245
-0.3272
-0.3057
-0.3289
-0.1532
-0.1967
-0.0667
-0.3281
-0.1418
-0.1527
-0.0987
-0.3243
-0.2252
-0.3462
-0.2284
-0.2263
-0.1810
-0.1564
-0.1730
-0.1507
-0.2913
-0.1643
-0.1998
-0.1532
-0.2211
-0.2247
-0.0913
-0.1563
-0.2453
-0.4854
-0.4428
-0.1021
-0.1615
-0.2125
-0.2239
-0.1952
-0.0447
-0.1733
-0.1178
-0.4775
-0.2110
-0.2305
-0.1795
-0.1582
-0.2008
-0.2041
-0.1974
-0.2750
-0.0395
-0.2161
-0.2786
-0.2626
-0.0997
-0.2953
-0.1431
-0.1448
-0.1894
-0.1283
-0.1807
-0.1144
-0.1308
-0.4154
-0.2324
-0.1376
-0.1154
-0.2099
-0.0966
-0.1669
-0.3835
-0.2545
-0.1603
-0.1904
-0.2420
-0.1658
-0.1133
-0.1498
-0.1213
-0.2318
-0.2017
-0.3827
-0.1491
-0.1174
-0.1261
-0.2031
-0.1832
-0.2274
-0.1281
-0.2557
-0.1400
-0.0723
-0.2212
-0.1486
-0.2914
-0.1116
-0.2194
-0.4898
-0.3693
-0.1437
-0.1232
-0.3723
-0.6794
-0.1536
[torch.FloatTensor of size 128]
), (u'layer2.1.conv2.weight', Parameter containing:
( 0 , 0 ,.,.) = 
 -1.6153e-02  5.0134e-03 -9.0186e-04
 -8.8386e-03 -1.9390e-02 -2.4174e-02
  6.3052e-03  1.0245e-02 -1.3816e-02

( 0 , 1 ,.,.) = 
 -1.0979e-02  2.6164e-03  2.3656e-02
 -1.7687e-02  1.9861e-02  6.4150e-02
  6.0224e-03  7.6342e-02  1.0215e-01

( 0 , 2 ,.,.) = 
 -8.1113e-03  6.8414e-03  2.5436e-02
 -8.0696e-03  9.2929e-03  8.2899e-03
  7.7306e-03  1.2159e-02  7.1625e-03
    ... 

( 0 ,125,.,.) = 
  1.5175e-02  6.2196e-03  2.1798e-02
 -1.5199e-02 -8.5439e-02 -2.4713e-02
 -1.8460e-02 -4.9767e-02 -1.6818e-03

( 0 ,126,.,.) = 
  3.0728e-02  3.9962e-02  3.1253e-02
 -1.8738e-02 -6.7510e-02 -2.7649e-02
  2.8429e-02  3.1854e-02  1.0543e-02

( 0 ,127,.,.) = 
 -1.8320e-02 -1.5854e-02 -1.0685e-02
 -2.7442e-02 -3.0616e-02 -1.0485e-02
 -1.5122e-02 -1.0595e-02 -2.5322e-02
      ⋮  

( 1 , 0 ,.,.) = 
  3.6868e-03  3.0996e-02  4.2763e-02
  4.6537e-02  4.8606e-02  2.3800e-03
  1.6654e-02  1.2900e-02 -1.8230e-02

( 1 , 1 ,.,.) = 
 -1.0441e-02 -1.5934e-03 -1.6128e-02
 -1.2799e-02  4.9570e-03 -1.4585e-02
 -2.3553e-02 -3.7023e-03 -1.4399e-02

( 1 , 2 ,.,.) = 
  1.0338e-02 -1.7560e-02 -3.3046e-02
 -3.2090e-02 -5.9258e-03  2.0201e-03
 -4.1428e-02  4.9121e-03  1.6906e-02
    ... 

( 1 ,125,.,.) = 
 -4.9525e-02 -4.6498e-02 -5.9916e-02
 -2.6670e-02 -1.9079e-02 -2.9419e-02
 -3.9683e-03  1.9405e-02  7.3317e-03

( 1 ,126,.,.) = 
  1.4293e-02  1.5643e-02  5.8117e-04
  5.1493e-03  7.4332e-03 -3.6928e-03
 -1.3522e-02 -8.5536e-03 -2.1259e-03

( 1 ,127,.,.) = 
 -3.0908e-02 -1.9839e-02 -1.9375e-02
 -1.0368e-02 -2.4294e-02  2.4103e-04
 -1.9275e-02 -2.9707e-02 -1.5623e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -4.9212e-02 -2.9588e-02  8.8023e-02
  4.7453e-03  4.3564e-02  9.3115e-02
  7.4083e-02  4.2868e-02 -5.1033e-02

( 2 , 1 ,.,.) = 
  6.6992e-03  2.1676e-02 -5.4254e-04
  1.9286e-02  1.0920e-02 -4.5440e-03
  3.1075e-02 -1.7168e-03 -2.7603e-02

( 2 , 2 ,.,.) = 
  6.0096e-02 -2.9359e-02 -5.8911e-02
 -1.9133e-02 -8.1624e-02 -2.2553e-02
  1.1597e-02  2.5092e-02  1.2130e-02
    ... 

( 2 ,125,.,.) = 
  5.4307e-03 -2.3130e-02  9.6233e-03
 -4.3785e-02 -2.6735e-02  2.1993e-02
 -3.5919e-02 -4.1009e-02 -2.1860e-02

( 2 ,126,.,.) = 
  3.3705e-02  6.2938e-02  4.3502e-02
  1.1111e-03  1.9243e-02 -1.9707e-03
 -1.1493e-02 -5.3445e-02 -9.6676e-03

( 2 ,127,.,.) = 
 -2.6664e-03 -2.6954e-02 -1.7667e-02
 -8.3382e-03  8.9920e-03  8.1260e-04
 -2.6832e-02 -3.5991e-02 -4.2495e-02
...     
      ⋮  

(125, 0 ,.,.) = 
 -1.8876e-03 -2.2728e-02 -4.2991e-03
 -9.2231e-03 -3.4333e-02 -1.3392e-02
 -1.2774e-02 -1.1435e-02  1.5617e-02

(125, 1 ,.,.) = 
  1.0703e-02  1.2792e-02  2.2662e-02
  7.3185e-03 -1.7847e-02  1.0674e-02
 -1.5936e-02 -1.9318e-02  2.1768e-02

(125, 2 ,.,.) = 
 -7.3009e-03  3.0234e-02 -1.1899e-02
 -2.6099e-02  3.7452e-03  3.2776e-02
 -3.3101e-02 -7.1923e-03  1.6559e-02
    ... 

(125,125,.,.) = 
 -3.2818e-02 -1.0021e-01 -4.7012e-02
  2.8293e-03  4.1410e-02 -1.1391e-02
 -1.1152e-02 -5.5861e-03  1.9968e-02

(125,126,.,.) = 
 -2.3932e-02 -3.0687e-02 -1.1756e-03
  1.5311e-03 -3.5002e-02 -2.4414e-02
 -8.7575e-03 -7.7842e-02 -3.8842e-02

(125,127,.,.) = 
  2.6107e-02  1.5406e-02  1.7569e-02
 -1.5130e-02 -4.8687e-03  3.0773e-03
 -1.3470e-02 -9.3201e-03 -4.8982e-03
      ⋮  

(126, 0 ,.,.) = 
 -2.0228e-02 -3.0006e-02 -9.8419e-03
 -3.8676e-02 -3.3481e-02 -7.4265e-03
 -2.8935e-02 -3.2037e-02  2.9245e-03

(126, 1 ,.,.) = 
 -1.2900e-02  3.8046e-03  1.5940e-02
 -2.4030e-02  2.0666e-03  5.7250e-03
  6.9989e-03  1.2192e-02  1.5406e-02

(126, 2 ,.,.) = 
 -1.5018e-02 -9.0988e-03  2.4450e-02
  1.0039e-02  1.2561e-02  2.6997e-02
  2.9556e-02  1.9463e-02 -2.6584e-03
    ... 

(126,125,.,.) = 
 -1.8481e-02  3.9417e-04  9.9768e-03
 -4.5447e-03  1.2307e-02  3.5507e-02
 -1.1873e-03 -2.6185e-03  1.1547e-02

(126,126,.,.) = 
  4.6292e-03 -1.3690e-02 -1.0171e-02
  1.2104e-02  1.6793e-02  1.3003e-02
  1.3328e-03  3.4701e-03  1.7323e-02

(126,127,.,.) = 
 -8.7332e-05  5.8646e-03 -3.5117e-03
  3.8112e-03 -7.1828e-03 -1.1407e-02
  1.9705e-02  2.0556e-02  5.7084e-03
      ⋮  

(127, 0 ,.,.) = 
  3.6998e-02  3.2616e-02 -9.4535e-04
 -2.9484e-02 -2.3441e-02 -2.8085e-02
 -2.5451e-02  3.9048e-02  3.6686e-02

(127, 1 ,.,.) = 
 -1.8732e-02 -1.5352e-02  1.1149e-02
 -2.1324e-03 -2.3177e-02  1.7628e-02
 -4.0012e-03  1.5463e-02  9.2496e-03

(127, 2 ,.,.) = 
 -2.9346e-02  7.7071e-03 -5.6520e-03
 -2.3611e-02 -1.9390e-03  2.0221e-02
  8.0955e-03 -2.3268e-02 -2.8827e-02
    ... 

(127,125,.,.) = 
 -3.3532e-02 -2.9092e-02 -4.0045e-02
  2.6530e-03 -2.0568e-02  1.3075e-02
  1.6061e-02 -5.5725e-02 -4.9167e-02

(127,126,.,.) = 
 -7.9132e-03  2.1466e-02  2.0913e-02
 -1.7259e-02 -2.5851e-02  2.7177e-03
 -4.6532e-02 -2.4846e-02 -1.9911e-02

(127,127,.,.) = 
 -5.0350e-02 -2.5574e-02  1.7763e-02
 -3.4474e-02  5.5247e-03 -2.7754e-02
 -2.0743e-02 -2.2332e-02 -4.3512e-02
[torch.FloatTensor of size 128x128x3x3]
), (u'layer2.1.bn2.running_mean', 
-0.0303
 0.0327
 0.0240
-0.0763
-0.1589
-0.0804
-0.1797
-0.0701
-0.1573
 0.1134
-0.0805
-0.0234
-0.0756
-0.1833
 0.0384
 0.0791
-0.0594
-0.0217
 0.0288
-0.1023
-0.0698
-0.0484
 0.1234
-0.1242
 0.0584
-0.1045
-0.0082
-0.0536
 0.0127
 0.0269
-0.1785
-0.0514
-0.0503
 0.0173
 0.0162
-0.2532
-0.2817
-0.2388
-0.0641
 0.0136
 0.1397
-0.2827
 0.0767
-0.0328
-0.0080
-0.0058
-0.1322
-0.0266
-0.3995
-0.0825
-0.1061
-0.0556
-0.0557
 0.0552
-0.1259
-0.0077
-0.1017
-0.0532
-0.1570
 0.0675
-0.5579
 0.0523
-0.1109
 0.0096
 0.0103
-0.0968
-0.0100
-0.2631
-0.1013
-0.0156
-0.0544
-0.1436
-0.0747
-0.0609
-0.0710
-0.1171
 0.0205
 0.0372
-0.0162
-0.0245
 0.1684
-0.2868
 0.0558
 0.0402
-0.1360
-0.0523
-0.0547
-0.1108
-0.2490
-0.0252
 0.0783
-0.1927
-0.1427
-0.1122
-0.0599
-0.0884
-0.0191
 0.0015
-0.5522
 0.0042
 0.0305
 0.0242
-0.1246
-0.1543
 0.0045
-0.1808
-0.2224
 0.0909
 0.0329
 0.5456
-0.0230
 0.0628
 0.0464
-0.0874
-0.0300
 0.1108
-0.0492
-0.0331
-0.2471
-0.0352
 0.0516
 0.0709
-0.2409
-0.0650
-0.1684
-0.0565
-0.1306
-0.0627
[torch.FloatTensor of size 128]
), (u'layer2.1.bn2.running_var', 
1.00000e-02 *
  1.8228
  2.1225
  2.8612
  2.0886
  2.9474
  4.7744
  3.5290
  2.8429
  2.8470
  4.5069
  2.9840
  1.9491
  1.7088
  2.9840
  2.8539
  2.8518
  2.0139
  2.2774
  3.2135
  3.3348
  1.7759
  4.7420
  3.0149
  4.1645
  3.7812
  4.6252
  2.9589
  1.6504
  2.6924
  3.0834
  3.6263
  4.5937
  3.1620
  2.6538
  2.2904
  5.8237
  5.6463
  4.0456
  2.6616
  3.2348
  3.3927
  8.4368
  2.4933
  1.7348
  2.2366
  2.1032
  1.9272
  1.5102
  5.6145
  3.9999
  1.8257
  4.0509
  3.2031
  2.2098
  3.3824
  2.2704
  2.5319
  1.8465
  6.8178
  2.6885
  7.2726
  2.1805
  4.9063
  2.6663
  2.3015
  1.3440
  4.7817
  5.8346
  3.3150
  4.7472
  1.8629
  3.3559
  4.5253
  3.1564
  3.6324
  3.4589
  4.7584
  3.2355
  1.7391
  3.5121
  1.8529
  5.3177
  1.3671
  3.0469
  3.7829
  1.6996
  4.1624
  3.1600
  3.2903
  1.6922
  3.2056
  4.3576
  3.5142
  2.4761
  1.6919
  3.8553
  3.6356
  1.7814
  6.2490
  4.0622
  2.5852
  2.2963
  2.7265
  2.9650
  2.0724
  4.4788
  5.7808
  2.0073
  3.9706
  5.8224
  4.3781
  3.6008
  2.6018
  3.5214
  1.9792
  3.2273
  4.9339
  1.6944
  6.2593
  2.9896
  2.5511
  1.5677
  3.6686
  1.5467
  3.1936
  2.8402
  2.8767
  4.4939
[torch.FloatTensor of size 128]
), (u'layer2.1.bn2.weight', Parameter containing:
 0.1194
 0.1625
 0.3084
 0.2931
 0.2957
 0.5263
 0.4038
 0.2024
 0.3401
 0.1982
 0.2559
 0.2311
 0.1630
 0.2891
 0.2248
 0.2311
 0.2417
 0.2187
 0.1922
 0.3103
 0.2015
 0.4802
 0.2481
 0.3898
 0.3204
 0.4035
 0.2617
 0.1551
 0.2256
 0.2117
 0.2708
 0.3537
 0.2505
 0.1843
 0.2465
 0.6501
 0.3898
 0.4289
 0.1799
 0.1604
 0.1775
 0.3600
 0.2694
 0.1283
 0.1662
 0.1716
 0.1837
 0.1710
 0.4178
 0.3249
 0.1759
 0.4717
 0.4115
 0.1995
 0.2025
 0.1492
 0.2860
 0.1072
 0.3649
 0.1906
 0.5369
 0.2400
 0.4411
 0.1702
 0.1993
 0.2045
 0.1972
 0.4041
 0.3034
 0.6168
 0.2284
 0.3228
 0.4547
 0.4370
 0.1570
 0.4057
 0.5791
 0.2338
 0.1586
 0.3130
 0.2201
 0.3195
 0.1166
 0.2517
 0.2184
 0.0989
 0.3116
 0.2613
 0.3277
 0.1778
 0.2718
 0.4174
 0.5140
 0.2136
 0.1905
 0.2898
 0.2472
 0.1341
 0.6212
 0.1810
 0.2394
 0.1417
 0.1759
 0.2827
 0.1987
 0.3775
 0.3749
 0.1274
 0.3656
 0.4305
 0.4212
 0.2673
 0.2016
 0.5098
 0.1449
 0.4408
 0.3583
 0.2503
 0.5682
 0.2518
 0.1392
 0.0617
 0.3406
 0.1313
 0.4586
 0.2914
 0.1326
 0.3915
[torch.FloatTensor of size 128]
), (u'layer2.1.bn2.bias', Parameter containing:
-0.1403
-0.0889
-0.4147
-0.2264
-0.0737
-0.3534
-0.3379
-0.0752
-0.1791
 0.0448
-0.2842
-0.1765
-0.1591
-0.0675
-0.1543
-0.1061
-0.2334
-0.0981
-0.0908
-0.0567
-0.1908
-0.2055
-0.2704
-0.1883
-0.3570
-0.1125
-0.1632
-0.0211
-0.1687
-0.2124
-0.1713
-0.0872
-0.2194
-0.1888
-0.2954
-0.4570
-0.0226
-0.0527
 0.0406
-0.0609
-0.0456
-0.1176
-0.0145
 0.0318
-0.2046
-0.0953
-0.0496
-0.1051
-0.0793
-0.1933
-0.1467
-0.3215
-0.3257
-0.2287
-0.0356
-0.1869
-0.1932
-0.0771
 0.2768
-0.0656
-0.0895
-0.2548
-0.2365
 0.0021
-0.0987
-0.3178
 0.1613
 0.0006
-0.2347
-0.4150
-0.1310
-0.3142
-0.2582
-0.5400
 0.0772
-0.2546
-0.4454
-0.0262
-0.0937
-0.2201
-0.2044
-0.0155
-0.0893
-0.2167
 0.1112
-0.0619
-0.1217
-0.1593
-0.1317
-0.1717
-0.3729
-0.3354
-0.3414
 0.0358
-0.2067
-0.1087
 0.0141
-0.0338
-0.2129
-0.1122
-0.1627
-0.2000
 0.0908
-0.0041
-0.1313
-0.2942
 0.0160
-0.1065
-0.1289
-0.1699
-0.1721
-0.1809
-0.2295
-0.3611
-0.1746
-0.3540
-0.1554
-0.2709
-0.2607
 0.0084
-0.0311
-0.0022
-0.0831
 0.0380
-0.4893
-0.2749
 0.1245
-0.1272
[torch.FloatTensor of size 128]
), (u'layer3.0.conv1.weight', Parameter containing:
( 0 , 0 ,.,.) = 
 -1.5906e-02 -1.6618e-02 -1.5938e-02
 -5.2744e-03  1.5103e-02  9.8805e-03
 -1.4850e-02  3.6254e-04 -1.1378e-02

( 0 , 1 ,.,.) = 
 -9.4971e-03 -1.8568e-02 -6.0605e-03
  9.7622e-03 -1.2294e-02 -5.2978e-03
  7.0518e-03 -1.6063e-02 -7.1445e-03

( 0 , 2 ,.,.) = 
 -2.2693e-02 -3.7669e-02 -3.3695e-02
 -3.1569e-02 -5.8022e-02 -3.9105e-02
 -3.4616e-02 -3.8806e-02 -1.5695e-02
    ... 

( 0 ,125,.,.) = 
  4.8713e-03  7.9539e-03  1.4374e-02
 -1.5242e-03  2.4200e-02  5.6440e-03
 -4.4355e-03  6.2454e-03  6.8561e-03

( 0 ,126,.,.) = 
  1.6028e-02 -1.2036e-02 -1.3101e-03
  9.5804e-03  5.7272e-03  1.6091e-03
 -9.9173e-03 -1.3593e-02 -6.3679e-03

( 0 ,127,.,.) = 
  5.3450e-02  4.6441e-02  2.4824e-02
  3.4065e-02 -2.8656e-03 -4.1207e-03
 -1.4000e-02 -4.6092e-03 -1.4152e-02
      ⋮  

( 1 , 0 ,.,.) = 
 -1.1567e-03 -1.8638e-02 -3.4453e-02
  4.9889e-03 -1.1695e-02 -3.3321e-02
  5.9653e-03 -1.6154e-02 -1.7452e-02

( 1 , 1 ,.,.) = 
  1.0729e-02  1.3964e-02 -1.9171e-02
  2.8854e-03  1.2573e-02  7.2767e-03
 -1.6815e-02 -1.8740e-02 -1.3784e-03

( 1 , 2 ,.,.) = 
 -2.1852e-02  6.2900e-03  1.5931e-02
 -3.5272e-03  5.6997e-03  3.1077e-02
  2.3169e-03  3.2389e-03  1.7490e-02
    ... 

( 1 ,125,.,.) = 
 -1.6246e-02 -7.7688e-03  7.7471e-03
 -1.4870e-03 -1.2226e-02 -9.3389e-03
  8.6164e-04 -2.2071e-03  7.3769e-03

( 1 ,126,.,.) = 
  2.9310e-03 -2.3592e-02  5.8461e-03
  1.4344e-02 -1.6924e-02 -6.1749e-03
 -7.7191e-03 -3.2305e-02 -3.3688e-02

( 1 ,127,.,.) = 
  8.6900e-03  1.3976e-02  8.0760e-03
 -3.3662e-03  1.0516e-02  1.4952e-02
  1.8944e-02  3.0948e-02  2.5647e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -3.5797e-02 -2.2565e-02 -1.4440e-02
 -7.5372e-03 -2.2142e-02  1.1150e-02
 -3.6385e-03 -1.4821e-02 -1.6427e-02

( 2 , 1 ,.,.) = 
 -1.4620e-02 -3.0657e-02 -2.0434e-02
 -2.8462e-02 -4.5328e-02 -5.7915e-02
  2.8774e-02 -1.5172e-02 -2.4541e-02

( 2 , 2 ,.,.) = 
  1.7403e-02  1.9920e-02 -4.6249e-03
  1.7813e-02  2.3648e-02  1.3638e-02
  2.9347e-02  4.3449e-02  1.8594e-02
    ... 

( 2 ,125,.,.) = 
  7.9258e-03 -1.2183e-02 -1.5811e-02
 -1.0720e-02 -3.1404e-02 -7.5279e-03
 -7.0299e-03 -1.7342e-02 -3.0783e-02

( 2 ,126,.,.) = 
 -1.0258e-02 -1.1796e-02 -1.7141e-02
 -2.6423e-02 -1.5036e-03  2.7959e-02
 -8.9306e-03  5.3510e-03  9.6632e-03

( 2 ,127,.,.) = 
  1.4481e-02 -3.1531e-02 -1.9707e-02
 -1.4944e-02 -1.7709e-02  7.6966e-03
  1.2465e-02  7.1035e-03 -6.1596e-03
...     
      ⋮  

(253, 0 ,.,.) = 
  5.3120e-03  2.5512e-02  7.1053e-03
  1.9666e-02  2.6990e-02  4.2043e-02
  4.1191e-02  2.2283e-02  3.5003e-02

(253, 1 ,.,.) = 
  2.5968e-03  4.0685e-03  1.0626e-02
  4.6474e-03  2.0337e-02  8.0847e-03
  1.4475e-02 -3.0070e-03 -1.9656e-02

(253, 2 ,.,.) = 
 -4.0235e-03  2.5510e-02  2.2875e-03
 -1.5182e-02  2.6031e-02  8.2526e-03
 -2.1065e-03  2.6928e-02  3.2296e-03
    ... 

(253,125,.,.) = 
  5.5063e-03 -4.8631e-03  1.8346e-02
  8.5499e-03  2.3002e-03  7.7201e-03
  8.2280e-03  9.5818e-03  2.1510e-02

(253,126,.,.) = 
 -1.7702e-02  9.9203e-03 -1.2934e-02
 -1.2670e-02  9.5506e-03 -1.2438e-02
  8.9810e-03  4.9343e-02  3.6238e-02

(253,127,.,.) = 
  1.2333e-02  1.8408e-02 -1.7794e-02
  5.7676e-03 -5.7844e-03 -1.1706e-02
  3.4462e-03 -1.0299e-02 -4.2529e-02
      ⋮  

(254, 0 ,.,.) = 
  3.1634e-02  7.6514e-02  4.4300e-02
  9.3963e-02  1.4798e-01  1.5104e-01
  6.6483e-02  1.3856e-01  1.1323e-01

(254, 1 ,.,.) = 
 -2.8205e-02 -4.0731e-03 -1.9967e-02
 -1.9283e-02 -1.2330e-03  1.0728e-02
 -1.6487e-02 -2.7540e-03  7.7751e-04

(254, 2 ,.,.) = 
 -1.2156e-02 -3.2183e-02 -1.5299e-02
 -9.1752e-04 -1.2350e-02 -3.8531e-03
 -1.9342e-02 -1.0735e-02 -2.1051e-02
    ... 

(254,125,.,.) = 
 -3.0457e-03  6.5687e-03 -3.2163e-04
  1.4628e-02 -1.6662e-02  1.4216e-02
  2.2738e-02  1.2016e-02  7.1802e-03

(254,126,.,.) = 
  3.9151e-03 -1.9739e-02  1.1058e-02
 -2.5105e-02 -3.8439e-02 -4.4722e-02
 -3.5862e-02 -9.8120e-02 -6.8447e-02

(254,127,.,.) = 
 -8.4853e-03  2.2905e-03  3.0757e-03
  3.8484e-03  1.8156e-02  6.9025e-03
  8.9456e-03  8.0009e-03  1.2579e-02
      ⋮  

(255, 0 ,.,.) = 
 -1.3006e-02 -9.0262e-03  1.0574e-03
 -2.5979e-02 -1.9484e-02 -9.3637e-03
  4.8438e-03  2.3742e-03  1.0574e-02

(255, 1 ,.,.) = 
 -2.4782e-03 -1.4049e-02 -2.8621e-02
 -2.3822e-03  1.1463e-03 -2.3321e-02
  1.2275e-02  8.3306e-04  1.4305e-03

(255, 2 ,.,.) = 
 -4.8958e-02 -4.3860e-02 -5.7901e-02
 -3.5920e-02 -3.6503e-02 -3.8574e-02
 -4.1023e-02 -3.3337e-02 -1.3673e-02
    ... 

(255,125,.,.) = 
 -1.1772e-02 -8.1042e-03 -1.5803e-02
 -2.7190e-02 -2.8550e-02  7.5042e-03
 -2.4363e-02  1.3943e-02  6.0615e-03

(255,126,.,.) = 
 -2.7317e-02  1.9704e-02  2.2183e-02
 -3.7557e-02  2.0815e-02  1.8682e-02
 -4.4557e-02 -4.3529e-03 -1.6779e-02

(255,127,.,.) = 
  1.9939e-02  2.6802e-02  1.1996e-02
  2.0260e-02  2.1540e-02  2.5003e-03
  1.8079e-04 -7.6315e-03 -1.9582e-02
[torch.FloatTensor of size 256x128x3x3]
), (u'layer3.0.bn1.running_mean', 
-0.1253
-0.2262
-0.4860
-0.1458
-0.6311
 0.0073
-0.0597
 0.0038
-0.1363
-0.2213
-0.3844
-0.5783
-1.2715
-0.4546
-1.4092
-0.4864
 0.2884
-0.7827
 0.3060
-0.3542
-0.5711
-0.7998
 0.0888
-0.1439
-0.6867
-0.8588
-0.5447
 0.2983
-0.1919
 0.1344
-0.6387
-0.4716
 0.6139
-0.0065
 0.0092
-0.7543
-0.3666
-0.1479
-0.7263
-0.3064
-0.3003
-0.4880
-0.3688
-0.3295
-0.1466
-0.6681
-0.1217
-0.5661
-0.7542
-0.4977
-0.1982
-0.7480
 0.2935
-0.5039
-0.4152
-0.1846
-0.0653
-0.3617
 0.0979
-0.0989
-0.8747
-0.6866
-0.2850
-0.1807
-0.7564
 0.4896
-0.4719
-0.3251
 0.2361
-0.2823
-0.5454
-0.5703
-0.3914
-0.7459
-0.3127
 0.4983
-0.4290
 0.0501
-0.1465
-0.6060
 0.3132
-0.3743
-0.5826
-0.3843
-0.1076
-0.5657
-0.3102
 0.3179
-0.7787
-0.0326
-0.4723
-0.5669
-0.0142
-0.5974
-0.3175
-0.9361
-0.1838
 0.1329
-1.0321
-0.0591
-0.4599
-0.5094
 0.2070
-0.0520
 0.1508
-0.8619
-0.0878
-0.8132
-0.3859
-0.2299
-0.6100
-0.2246
-0.3464
-0.9515
 0.0855
 0.3101
-0.4721
-0.4155
 0.0080
-0.1732
-0.6501
-0.6203
-0.1372
-0.1522
-0.2870
-0.4941
 0.0966
 0.5073
-0.2510
-0.3032
-0.3150
-0.5733
-0.0545
-0.3441
-0.7644
-0.2321
-0.7738
-0.1745
 0.2423
-0.3351
-0.1296
-0.5125
-0.1101
-0.8768
-0.2860
-0.3560
-0.1244
-0.2997
-0.1577
-0.3160
-0.1748
 0.5893
 0.1252
-0.2802
-0.0514
-0.6605
-0.1989
-0.1062
-0.0844
-0.6724
-0.0008
-0.2606
-0.3828
-0.1674
-1.4552
-0.4452
-0.2158
-0.5878
-0.4179
-0.6215
 0.1737
-0.5887
-0.5720
 0.0747
-0.6005
-0.3461
-0.3260
-0.3577
-0.0933
-0.3588
-0.3935
-0.9551
-0.9143
-0.2762
-0.3652
-0.1704
-0.2676
-0.2292
-0.3800
-0.4927
-0.2178
-0.3614
-0.1274
-0.5203
-0.5437
 0.0210
-0.6357
-0.5927
-0.1611
-0.1015
-0.4067
-0.4212
-0.2671
-0.3272
-0.4998
 0.0105
-0.3977
-0.4612
-0.0671
 0.1528
-0.1927
-0.4018
-0.5817
-0.3383
-0.5079
-0.6062
-0.2094
 0.0344
 0.0049
-0.0074
-0.8431
-0.8824
-0.3549
-0.2095
-0.4937
-0.2907
-0.4414
-0.4896
 0.0836
-0.9780
-0.4721
-0.1474
-0.3185
-0.2436
-0.1797
-0.0429
-0.2972
-0.4299
-0.3125
-0.3699
-0.4899
-0.0979
-0.7804
-0.3924
 0.0850
-0.5030
-0.6755
-0.2506
-0.4354
-0.2441
 0.0193
-0.3442
-0.6758
-0.4484
-0.1628
-0.6801
[torch.FloatTensor of size 256]
), (u'layer3.0.bn1.running_var', 
 0.2509
 0.2989
 0.2810
 0.2616
 0.3038
 0.3614
 0.1749
 0.2615
 0.2315
 0.2593
 0.3199
 0.2039
 0.3937
 0.2819
 0.6928
 0.1669
 0.1971
 0.2347
 0.1798
 0.2584
 0.2045
 0.2247
 0.2575
 0.1896
 0.2243
 0.3290
 0.2262
 0.1629
 0.1750
 0.2162
 0.2686
 0.1990
 0.3028
 0.2474
 0.6300
 0.2747
 0.2340
 0.2184
 0.3476
 0.1966
 0.1739
 0.2011
 0.1882
 0.1917
 0.2349
 0.1796
 0.2018
 0.1950
 0.2186
 0.2595
 0.1522
 0.2088
 0.1380
 0.5258
 0.1659
 0.3283
 0.1931
 0.2347
 0.1449
 0.2613
 0.2720
 0.1855
 0.2469
 0.2337
 0.2525
 0.1487
 0.1740
 0.2101
 0.3507
 0.1668
 0.2851
 0.1874
 0.1725
 0.2619
 0.1903
 0.2774
 0.1875
 0.2584
 0.1635
 0.2693
 0.1709
 0.7093
 0.2264
 0.2439
 0.2717
 0.2020
 0.2420
 0.1979
 0.3249
 0.2325
 0.2174
 0.2400
 0.2201
 0.1914
 0.2311
 0.4723
 0.2749
 0.2033
 0.4373
 0.2124
 0.1956
 0.1570
 0.2497
 0.2723
 0.1928
 0.2726
 0.1942
 0.2862
 0.2731
 0.2348
 0.3259
 0.3079
 0.2799
 0.1865
 0.2416
 0.2262
 0.3502
 0.2169
 0.2371
 0.1750
 0.2822
 0.1983
 0.3979
 0.2380
 0.1798
 0.2661
 0.1640
 0.4260
 0.2032
 0.1764
 0.1802
 0.2821
 0.4783
 0.1895
 0.3361
 0.2009
 0.1541
 0.2021
 0.2365
 0.3530
 0.1833
 0.6131
 0.1840
 0.2772
 0.2735
 0.1799
 0.4005
 0.2144
 0.2677
 0.2665
 0.4213
 0.2373
 0.2408
 0.2575
 0.3893
 0.1723
 0.3173
 0.2014
 0.5098
 0.2254
 0.2103
 0.3155
 0.3065
 0.1814
 0.2512
 0.1665
 0.2078
 0.2352
 0.2161
 0.1674
 0.4302
 0.3045
 0.3518
 0.1620
 0.2234
 0.2028
 0.1523
 0.3315
 0.2086
 0.3005
 0.2760
 0.1988
 0.1683
 0.2111
 0.3077
 0.2803
 0.3045
 0.1773
 0.1797
 0.1470
 0.2122
 0.2147
 0.1688
 0.1913
 0.2067
 0.2444
 0.2609
 0.2750
 0.2597
 0.2373
 0.2216
 0.3981
 0.7746
 0.2015
 0.1734
 0.3637
 0.1748
 0.2495
 0.2457
 0.1559
 0.2741
 0.3765
 0.2767
 0.2841
 0.2553
 0.1582
 0.3328
 0.1996
 0.2284
 0.2720
 0.2520
 0.2724
 0.1931
 0.2924
 0.2629
 0.3760
 0.2206
 0.2616
 0.1907
 0.2821
 0.2752
 0.2303
 0.2730
 0.2340
 0.2235
 0.1466
 0.2869
 0.2763
 0.2823
 0.1843
 0.1804
 0.2244
 0.1840
 0.1446
 0.2126
 0.1792
 0.2546
 0.1661
 0.1881
 0.1667
 0.2371
 0.2523
 0.2260
 0.2728
 0.2028
 0.4802
[torch.FloatTensor of size 256]
), (u'layer3.0.bn1.weight', Parameter containing:
 0.2856
 0.2425
 0.3032
 0.3168
 0.3011
 0.3475
 0.3076
 0.3105
 0.3646
 0.3255
 0.2195
 0.3167
 0.2674
 0.3104
 0.3026
 0.3443
 0.2915
 0.3379
 0.2887
 0.2996
 0.3588
 0.3164
 0.2882
 0.2917
 0.3492
 0.3749
 0.3587
 0.3166
 0.2756
 0.2978
 0.3364
 0.2893
 0.3106
 0.2506
 0.3460
 0.3621
 0.2570
 0.3695
 0.2935
 0.3286
 0.3243
 0.3188
 0.3093
 0.3314
 0.3550
 0.2978
 0.2737
 0.3023
 0.3179
 0.2831
 0.3065
 0.3390
 0.3053
 0.3099
 0.3017
 0.3472
 0.3034
 0.2935
 0.3352
 0.3676
 0.3163
 0.3404
 0.3078
 0.2819
 0.3794
 0.3083
 0.2778
 0.3363
 0.2284
 0.3259
 0.2790
 0.3072
 0.2975
 0.3847
 0.3372
 0.2253
 0.2827
 0.3737
 0.2796
 0.3485
 0.3879
 0.3288
 0.3340
 0.3335
 0.2756
 0.3500
 0.2897
 0.2798
 0.2907
 0.3220
 0.3824
 0.3522
 0.3278
 0.3689
 0.3147
 0.3600
 0.3123
 0.2519
 0.2355
 0.3211
 0.3203
 0.3345
 0.2768
 0.3341
 0.3153
 0.3175
 0.2224
 0.2956
 0.3206
 0.2658
 0.3662
 0.2715
 0.3655
 0.3427
 0.2820
 0.2754
 0.4669
 0.3090
 0.3468
 0.3144
 0.3220
 0.2765
 0.3301
 0.3219
 0.3152
 0.2813
 0.2497
 0.3514
 0.3264
 0.3014
 0.2734
 0.3522
 0.3831
 0.3028
 0.2940
 0.2825
 0.3099
 0.2373
 0.2705
 0.4189
 0.2985
 0.3841
 0.2754
 0.3091
 0.3169
 0.2824
 0.2749
 0.3493
 0.4018
 0.3108
 0.2176
 0.2821
 0.3199
 0.3358
 0.2468
 0.3332
 0.2876
 0.2964
 0.2385
 0.3451
 0.3081
 0.2760
 0.2533
 0.2576
 0.3092
 0.2950
 0.3089
 0.3113
 0.3475
 0.3172
 0.2474
 0.3371
 0.3450
 0.3189
 0.3150
 0.3008
 0.2694
 0.3730
 0.3235
 0.2988
 0.2812
 0.3245
 0.3630
 0.2843
 0.3533
 0.3451
 0.3244
 0.3524
 0.3118
 0.3429
 0.3215
 0.2748
 0.3287
 0.3656
 0.2901
 0.2523
 0.3284
 0.2523
 0.3426
 0.2851
 0.2918
 0.2497
 0.5159
 0.3026
 0.2743
 0.2379
 0.3524
 0.3394
 0.2264
 0.2652
 0.3759
 0.3777
 0.2459
 0.3046
 0.3067
 0.3775
 0.2976
 0.3552
 0.2696
 0.2649
 0.2872
 0.2985
 0.2867
 0.3676
 0.3494
 0.3823
 0.3246
 0.3567
 0.2662
 0.3357
 0.2935
 0.2987
 0.2664
 0.3019
 0.3175
 0.2436
 0.3274
 0.2764
 0.2466
 0.2876
 0.3060
 0.3157
 0.3329
 0.2984
 0.2961
 0.3309
 0.3729
 0.3238
 0.3491
 0.3342
 0.3037
 0.3578
 0.2849
 0.2827
 0.2809
 0.3249
[torch.FloatTensor of size 256]
), (u'layer3.0.bn1.bias', Parameter containing:
-0.0915
 0.0189
-0.1235
-0.0613
-0.1003
-0.1306
-0.1473
-0.1079
-0.2438
-0.1113
 0.1361
-0.1477
 0.0387
-0.0907
 0.0352
-0.1851
-0.1319
-0.1746
-0.0815
-0.1004
-0.3394
-0.1712
-0.0807
-0.1228
-0.2263
-0.1503
-0.2314
-0.2327
-0.0854
-0.0802
-0.0716
-0.0839
-0.0592
 0.0358
-0.0322
-0.2197
 0.0027
-0.1471
-0.0264
-0.1886
-0.2417
-0.1494
-0.1904
-0.1089
-0.2657
-0.1362
-0.0487
-0.1340
-0.0930
-0.0064
-0.1721
-0.1476
-0.1714
 0.0336
-0.1011
-0.1761
-0.1184
-0.0482
-0.3260
-0.1555
-0.0169
-0.2373
-0.1015
-0.1051
-0.2738
-0.1917
-0.0503
-0.1098
 0.1484
-0.2282
-0.0700
-0.1427
-0.1417
-0.3096
-0.2043
 0.0269
-0.0779
-0.0842
-0.0464
-0.1429
-0.3917
 0.0257
-0.1779
-0.0993
-0.0507
-0.2222
-0.0951
-0.0861
-0.0743
-0.1666
-0.2054
-0.1782
-0.1150
-0.2525
-0.0694
-0.0536
-0.0499
-0.0311
 0.1212
-0.0988
-0.1570
-0.3093
-0.0797
-0.0994
-0.1774
-0.0505
 0.0766
-0.0480
-0.1278
-0.0651
-0.1737
 0.0303
-0.1334
-0.2435
-0.0746
-0.0365
-0.1843
-0.0887
-0.1924
-0.1110
-0.1458
-0.0895
-0.0956
-0.2042
-0.1338
-0.0637
-0.0699
-0.1656
-0.1521
-0.1317
-0.0826
-0.2470
-0.1174
-0.1475
-0.0840
-0.0681
-0.1789
 0.0288
-0.0362
-0.3005
-0.1441
-0.0812
-0.0492
-0.0657
-0.1249
-0.1104
 0.0187
-0.1351
-0.1944
-0.0909
 0.2067
-0.1081
-0.2499
-0.0999
 0.0507
-0.1899
-0.0369
-0.1432
 0.1279
-0.1782
-0.1172
-0.0099
 0.0785
-0.0681
-0.0365
-0.1596
-0.1606
-0.0922
-0.1773
-0.1788
 0.0306
-0.1101
-0.1355
-0.2244
-0.0860
-0.1232
-0.0927
-0.1666
-0.1393
-0.0898
-0.0614
-0.1740
-0.2503
-0.0593
-0.1272
-0.1422
-0.0743
-0.2208
-0.2207
-0.2742
-0.1302
-0.0916
-0.1696
-0.2481
-0.1524
 0.0410
-0.1077
 0.0408
-0.1915
-0.0697
-0.1049
-0.0110
-0.3257
-0.1336
-0.1021
 0.0128
-0.2717
-0.1245
 0.0288
-0.1025
-0.2405
-0.1476
 0.1008
-0.0220
-0.0983
-0.4417
-0.0774
-0.3207
-0.0272
-0.0726
-0.0608
-0.0430
-0.0872
-0.1280
-0.1608
-0.1529
-0.1745
-0.1702
-0.0486
-0.1459
-0.0552
-0.0808
-0.0264
-0.0952
-0.1126
-0.0452
-0.0837
-0.0331
 0.0127
-0.0865
-0.1446
-0.0732
-0.2160
-0.0952
-0.1297
-0.2008
-0.2135
-0.2204
-0.2381
-0.1787
-0.1386
-0.1901
-0.0981
-0.0850
-0.0761
-0.0586
[torch.FloatTensor of size 256]
), (u'layer3.0.conv2.weight', Parameter containing:
( 0 , 0 ,.,.) = 
 -9.2775e-03 -3.3897e-02 -1.1927e-02
 -2.4595e-02 -7.9761e-02 -4.8709e-02
 -4.3490e-02 -8.0118e-02 -6.5252e-02

( 0 , 1 ,.,.) = 
 -2.8918e-02  2.3763e-04 -2.8561e-02
  9.8557e-03  1.0253e-02 -1.7677e-02
 -1.0684e-02  2.8071e-03 -1.2483e-02

( 0 , 2 ,.,.) = 
 -1.4730e-02  2.2622e-02  4.4314e-03
  1.5512e-02  1.0901e-02 -4.0294e-03
 -2.0756e-02 -1.8048e-02 -1.7258e-02
    ... 

( 0 ,253,.,.) = 
  3.1821e-04 -4.0924e-03 -7.9885e-04
 -2.1664e-02 -2.2339e-02 -2.9870e-02
  1.0453e-02  3.4707e-03 -1.1426e-02

( 0 ,254,.,.) = 
  9.6516e-03  1.8361e-02  3.7035e-02
  3.7147e-03  1.0427e-02  1.5162e-02
  8.4325e-03  1.8343e-02  3.0159e-02

( 0 ,255,.,.) = 
  1.3859e-03  8.4181e-03  9.7185e-03
  2.6455e-02  4.1474e-02  5.5292e-02
  1.6905e-02  6.1027e-02  5.6296e-02
      ⋮  

( 1 , 0 ,.,.) = 
  1.1743e-02  1.6508e-02  5.1232e-03
  2.9441e-02  2.0441e-02  2.1624e-02
  7.8852e-03  1.3290e-02  1.1664e-02

( 1 , 1 ,.,.) = 
 -1.5315e-02 -2.1319e-02 -8.9703e-03
 -2.9171e-02 -5.1600e-02 -4.3605e-02
 -4.5486e-03 -3.7239e-02 -4.2013e-02

( 1 , 2 ,.,.) = 
  3.0217e-04  3.9781e-02 -1.4889e-04
  1.2860e-02  3.3156e-02  1.6254e-02
 -9.5886e-03 -5.6529e-03 -1.6966e-02
    ... 

( 1 ,253,.,.) = 
  4.4662e-02  8.1982e-03  1.6867e-02
 -6.6190e-03 -3.7080e-02 -5.9346e-03
 -2.3913e-02 -6.0699e-02 -2.8947e-02

( 1 ,254,.,.) = 
 -5.7020e-03 -4.2262e-02 -2.1947e-02
 -2.2780e-02 -3.1428e-02 -5.8322e-02
 -1.9598e-02 -5.2995e-02 -4.8502e-02

( 1 ,255,.,.) = 
  6.4948e-03  3.2666e-03  9.3442e-03
  1.0466e-03 -4.9306e-03 -1.1003e-02
 -1.5981e-02 -1.0119e-02 -1.4555e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -6.1149e-03 -6.6849e-03 -6.9256e-03
 -5.1692e-03 -8.9064e-03 -1.4313e-02
 -1.1450e-02 -1.7125e-02 -2.3729e-02

( 2 , 1 ,.,.) = 
  3.9899e-02  1.6684e-02  2.0991e-02
  1.6498e-02 -2.6236e-02 -1.1630e-02
  5.9030e-03 -2.0597e-02 -1.5280e-02

( 2 , 2 ,.,.) = 
  6.0228e-03  2.4200e-02  2.0716e-02
  4.9551e-03 -6.1590e-03  1.4790e-02
  9.8595e-03 -2.7931e-02 -5.4261e-03
    ... 

( 2 ,253,.,.) = 
 -9.7426e-03 -1.6989e-03 -1.0106e-02
 -6.1351e-04  4.3355e-02  3.8143e-02
  3.7943e-03  4.4980e-02  3.9165e-02

( 2 ,254,.,.) = 
  1.3395e-02  6.9187e-03  1.9631e-02
  6.7533e-03  2.5027e-02  1.5162e-02
  1.7857e-03 -4.3971e-03  3.7016e-03

( 2 ,255,.,.) = 
 -1.7440e-02 -1.6260e-02 -2.4000e-02
 -1.9716e-02 -1.7364e-02 -1.7828e-02
 -3.0010e-02 -1.3697e-02 -2.1068e-02
...     
      ⋮  

(253, 0 ,.,.) = 
  6.5624e-03  6.0837e-03  2.8446e-02
 -1.2967e-02 -5.0910e-02 -2.0435e-02
 -1.5419e-02 -1.4899e-02 -1.8056e-02

(253, 1 ,.,.) = 
  1.2341e-02  3.2479e-02  2.2650e-02
 -4.2432e-03 -1.8113e-02  2.2224e-03
  2.9012e-03 -1.7405e-02  3.1869e-03

(253, 2 ,.,.) = 
 -1.0992e-02  1.1080e-02 -1.4198e-02
  8.2258e-03  3.0135e-02  4.1601e-02
  6.0791e-04  1.6776e-04  2.1328e-02
    ... 

(253,253,.,.) = 
 -7.5068e-04  2.6565e-02  1.1820e-02
 -1.5916e-02 -7.4243e-03 -5.1214e-03
  4.1732e-03 -6.8548e-03 -7.3191e-03

(253,254,.,.) = 
 -6.9767e-03  9.7686e-04  1.8935e-03
  6.0631e-03  5.0983e-02 -3.4937e-03
 -8.1496e-03 -3.0339e-02 -1.7409e-02

(253,255,.,.) = 
 -1.0048e-02  3.2093e-04 -1.1435e-03
 -1.5435e-03 -2.9689e-02 -1.9539e-02
 -9.6000e-04  4.8948e-03  1.5117e-02
      ⋮  

(254, 0 ,.,.) = 
  1.6080e-02  1.2594e-02  5.4767e-03
 -1.3241e-02 -1.9564e-02 -2.0807e-02
 -7.7261e-03 -2.3040e-02 -2.0197e-02

(254, 1 ,.,.) = 
 -1.8947e-03  5.3025e-02  1.3421e-02
  2.7344e-03  2.4908e-02  1.6726e-02
 -1.9196e-02 -1.8768e-02 -1.9954e-02

(254, 2 ,.,.) = 
  8.0703e-03  2.9987e-02  5.7642e-04
  3.5938e-03  2.5408e-02 -1.0444e-02
 -9.6803e-04 -1.9317e-02 -1.2085e-02
    ... 

(254,253,.,.) = 
  1.6295e-02  2.5060e-02  2.8950e-02
 -7.3188e-03 -1.4100e-03  1.2378e-02
 -2.1144e-02 -3.4673e-02 -1.9507e-02

(254,254,.,.) = 
  1.6469e-02  5.1930e-02  4.9364e-02
  5.8284e-03  1.9868e-02  3.6292e-02
 -4.9320e-03 -1.6470e-02 -1.2967e-02

(254,255,.,.) = 
 -1.0214e-02 -3.0802e-02 -3.4004e-02
  5.5274e-03 -1.0925e-02  4.6995e-04
  3.8212e-02  2.0936e-02  3.2566e-02
      ⋮  

(255, 0 ,.,.) = 
  1.8364e-02 -3.0699e-03  1.0348e-02
 -7.2351e-03 -1.2742e-03 -6.9527e-03
  2.1686e-02  1.1490e-03 -3.2707e-03

(255, 1 ,.,.) = 
 -1.6594e-02  1.5176e-04 -9.1776e-03
  1.5036e-02  5.8408e-02  2.1840e-02
 -1.3606e-02  1.8126e-02  1.6354e-02

(255, 2 ,.,.) = 
  2.1872e-02  3.1581e-02  1.8289e-02
 -2.1028e-03 -1.5633e-02  2.0265e-02
  5.2924e-03  4.8438e-04  1.5701e-02
    ... 

(255,253,.,.) = 
  4.4712e-03 -2.4757e-03  1.7267e-03
 -5.2339e-03 -8.8001e-03  1.3738e-02
 -1.0695e-02  1.0347e-03  1.6962e-02

(255,254,.,.) = 
 -5.9934e-03 -3.6803e-02  3.0996e-03
  1.0224e-02  2.9117e-02 -7.3036e-04
  9.9051e-03  5.9974e-02  2.7242e-02

(255,255,.,.) = 
 -9.1759e-03 -1.8297e-02  6.2411e-03
 -3.1871e-02 -2.9350e-02 -1.4883e-02
 -1.4808e-02 -1.2348e-02 -2.3609e-02
[torch.FloatTensor of size 256x256x3x3]
), (u'layer3.0.bn2.running_mean', 
-0.1898
-0.4822
-0.0088
 0.0064
-0.3401
-0.1041
-0.1626
-0.2259
-0.1119
-0.3254
-0.0254
-0.2351
-0.0790
-0.3306
-0.0956
-0.0415
-0.3207
-0.0037
-0.1830
-0.1295
-0.2069
-0.2632
-0.1351
-0.1295
-0.2527
-0.0104
-0.0875
-0.3375
-0.5001
-0.1199
-0.1989
-0.2964
-0.1924
-0.2904
-0.0091
-0.0104
 0.0738
-0.1760
 0.0442
-0.2232
 0.0376
-0.1235
-0.0065
-0.2524
-0.0120
 0.0555
 0.1533
-0.1421
-0.1160
-0.0893
-0.1547
-0.1615
 0.0208
-0.3496
-0.1477
-0.6155
-0.1364
-0.0405
-0.3246
-0.1697
 0.1694
-0.0662
-0.2076
-0.3969
-0.2936
 0.1080
-0.2798
-0.0859
-0.0713
-0.3520
-0.0642
-0.1993
 0.0202
-0.3808
-0.0833
-0.1321
-0.3009
-0.1800
 0.0824
-0.0532
 0.1538
 0.1777
 0.1837
-0.1972
-0.0083
-0.2135
-0.3881
-0.1686
-0.1149
 0.2055
-0.2054
-0.1345
-0.1579
-0.1801
-0.2133
-0.2940
-0.2087
-0.0419
-0.2158
-0.0453
-0.2935
-0.1574
 0.0310
 0.0154
-0.1013
 0.0401
-0.4071
-0.2852
-0.2954
-0.2261
-0.1083
 0.1359
-0.6190
-0.1957
-0.2018
-0.0181
-0.3157
-0.0974
-0.2188
 0.0105
-0.0686
-0.2937
-0.3168
-0.1745
 0.0286
-0.1721
-0.2043
-0.2114
-0.2032
-0.2170
 0.0459
 0.2110
-0.1009
-0.0560
 0.1501
-0.1713
 0.0171
-0.2029
-0.2175
 0.0836
-0.0215
-0.3423
-0.1450
 0.1632
-0.1679
-0.1672
-0.1634
-0.3611
-0.0664
-0.3015
-0.1192
 0.0192
-0.1420
-0.2852
-0.3039
-0.0897
-0.0659
-0.0240
-0.2212
 0.0306
-0.0083
-0.3773
-0.2584
 0.0030
-0.0981
-0.2602
-0.1212
-0.2094
-0.1398
-0.1795
-0.1467
 0.0102
-0.1396
-0.2732
-0.1427
-0.1136
-0.1668
-0.3346
-0.3108
-0.0469
-0.0733
-0.3828
-0.1082
-0.0854
-0.1564
-0.1707
-0.1396
 0.0373
 0.2787
-0.2415
-0.1196
-0.1453
-0.2642
-0.1012
 0.0470
-0.1133
 0.1593
-0.0566
-0.1868
-0.2362
 0.0922
 0.1657
 0.1560
-0.1998
-0.1939
 0.1154
 0.0537
-0.2192
-0.0997
-0.2332
-0.1498
 0.0317
 0.0793
-0.2177
-0.2654
-0.2278
-0.0419
 0.0142
-0.2111
-0.0224
 0.0953
-0.1628
 0.0981
-0.1220
-0.0360
-0.3884
 0.1147
 0.0069
-0.2821
-0.6060
-0.2243
 0.0177
-0.0736
-0.1372
-0.0436
 0.1616
-0.1906
-0.2774
 0.1136
 0.1891
 0.0610
 0.0161
-0.1046
-0.0830
 0.0079
-0.0963
-0.1956
-0.1445
-0.1591
 0.0612
-0.2552
 0.0082
 0.1980
-0.2280
-0.1163
-0.1644
[torch.FloatTensor of size 256]
), (u'layer3.0.bn2.running_var', 
 0.1079
 0.1131
 0.0924
 0.0718
 0.0979
 0.1616
 0.0678
 0.0953
 0.1568
 0.1489
 0.1486
 0.1188
 0.1037
 0.3279
 0.0749
 0.0980
 0.0845
 0.0636
 0.0813
 0.1006
 0.0732
 0.0642
 0.1933
 0.0824
 0.0592
 0.1489
 0.0738
 0.0896
 0.2559
 0.1517
 0.0685
 0.1045
 0.1164
 0.1185
 0.0899
 0.1024
 0.0694
 0.1614
 0.0858
 0.0782
 0.0630
 0.1314
 0.1087
 0.1018
 0.0709
 0.0973
 0.0638
 0.0795
 0.0911
 0.0772
 0.0806
 0.0986
 0.1304
 0.1646
 0.1006
 0.1233
 0.0703
 0.1033
 0.1296
 0.2374
 0.0908
 0.1296
 0.0678
 0.1330
 0.2067
 0.0860
 0.1207
 0.1573
 0.1656
 0.0776
 0.1666
 0.1887
 0.1168
 0.1144
 0.0464
 0.1130
 0.0565
 0.0652
 0.1031
 0.1098
 0.0761
 0.1014
 0.0627
 0.0624
 0.0985
 0.1319
 0.0639
 0.0881
 0.0646
 0.1989
 0.2018
 0.0689
 0.0622
 0.1239
 0.1009
 0.1935
 0.0756
 0.1753
 0.1422
 0.1525
 0.0735
 0.1037
 0.0774
 0.0733
 0.1340
 0.0680
 0.1867
 0.0649
 0.0885
 0.1279
 0.1967
 0.1160
 0.1611
 0.0786
 0.0696
 0.1040
 0.1400
 0.0959
 0.0994
 0.0631
 0.0447
 0.1600
 0.0627
 0.1007
 0.2316
 0.1074
 0.0695
 0.0526
 0.1179
 0.2217
 0.0784
 0.0968
 0.0907
 0.0670
 0.0758
 0.0821
 0.1580
 0.1111
 0.0929
 0.0876
 0.0962
 0.0588
 0.0759
 0.0939
 0.0777
 0.1199
 0.0678
 0.1432
 0.0874
 0.0669
 0.0881
 0.1013
 0.1303
 0.0878
 0.1138
 0.0809
 0.0946
 0.0940
 0.1462
 0.1615
 0.0843
 0.1210
 0.0923
 0.0445
 0.0966
 0.1024
 0.0637
 0.0707
 0.0742
 0.1396
 0.0499
 0.1179
 0.0688
 0.0487
 0.0878
 0.0864
 0.0791
 0.1722
 0.0996
 0.1252
 0.0556
 0.0761
 0.0729
 0.1205
 0.0550
 0.1080
 0.1323
 0.2279
 0.0527
 0.0671
 0.0955
 0.1127
 0.1290
 0.0872
 0.0926
 0.0790
 0.0589
 0.1320
 0.0604
 0.0704
 0.0905
 0.0549
 0.1623
 0.0629
 0.0672
 0.0640
 0.0800
 0.1275
 0.1319
 0.0743
 0.1381
 0.0659
 0.1329
 0.1962
 0.0738
 0.1416
 0.1639
 0.0966
 0.0992
 0.0786
 0.0766
 0.0907
 0.0760
 0.1000
 0.1351
 0.0603
 0.0603
 0.0767
 0.0671
 0.1331
 0.1200
 0.0779
 0.0832
 0.0619
 0.1206
 0.0986
 0.0742
 0.0960
 0.0676
 0.0902
 0.1195
 0.0415
 0.0926
 0.1191
 0.1055
 0.1332
 0.0862
 0.0865
 0.0650
 0.0798
 0.0661
 0.1010
 0.1038
 0.1005
 0.0945
 0.0611
[torch.FloatTensor of size 256]
), (u'layer3.0.bn2.weight', Parameter containing:
 0.3212
 0.2124
 0.2661
 0.3594
 0.2785
 0.2582
 0.3108
 0.3096
 0.3348
 0.2992
 0.2545
 0.2458
 0.3133
 0.4159
 0.2997
 0.3070
 0.3135
 0.4418
 0.3743
 0.2570
 0.2943
 0.3078
 0.2738
 0.3948
 0.2928
 0.3572
 0.3435
 0.5379
 0.4243
 0.3908
 0.2745
 0.2798
 0.3217
 0.1956
 0.2751
 0.3187
 0.3507
 0.2751
 0.1919
 0.3307
 0.2850
 0.3038
 0.2179
 0.2652
 0.2944
 0.2138
 0.2184
 0.2948
 0.3262
 0.3759
 0.2557
 0.3796
 0.2950
 0.3386
 0.3243
 0.3070
 0.3331
 0.2302
 0.3036
 0.3377
 0.2922
 0.2204
 0.3267
 0.3198
 0.4023
 0.2987
 0.4860
 0.2854
 0.2716
 0.4341
 0.2834
 0.2296
 0.2507
 0.3120
 0.3673
 0.3244
 0.3380
 0.3272
 0.2868
 0.2877
 0.3210
 0.2332
 0.3379
 0.2767
 0.2942
 0.2672
 0.4401
 0.2908
 0.3771
 0.2789
 0.3056
 0.3276
 0.3871
 0.2453
 0.2559
 0.2783
 0.3168
 0.3410
 0.2318
 0.3577
 0.5036
 0.3557
 0.2475
 0.1852
 0.2273
 0.3602
 0.2919
 0.3928
 0.4423
 0.2052
 0.2524
 0.2189
 0.4113
 0.3611
 0.4284
 0.2333
 0.3504
 0.7001
 0.3754
 0.2874
 0.3702
 0.3174
 0.3640
 0.2889
 0.4155
 0.2479
 0.2898
 0.3740
 0.4926
 0.2808
 0.2388
 0.3473
 0.1868
 0.2837
 0.3090
 0.3614
 0.2797
 0.6871
 0.2854
 0.2937
 0.3128
 0.4863
 0.2193
 0.2871
 0.2554
 0.4175
 0.3044
 0.3230
 0.3343
 0.4947
 0.3924
 0.2264
 0.2657
 0.4193
 0.3483
 0.3551
 0.2877
 0.2559
 0.2459
 0.2775
 0.3842
 0.2949
 0.3510
 0.1926
 0.3101
 0.3417
 0.3931
 0.3918
 0.3239
 0.2851
 0.4583
 0.2669
 0.2663
 0.4433
 0.3221
 0.3655
 0.3336
 0.4393
 0.3970
 0.3727
 0.3523
 0.3586
 0.3286
 0.4181
 0.2955
 0.3050
 0.2988
 0.4320
 0.2309
 0.3826
 0.2270
 0.2228
 0.3206
 0.3273
 0.2627
 0.3087
 0.2920
 0.2328
 0.4144
 0.4075
 0.3264
 0.3583
 0.3014
 0.3150
 0.4438
 0.4042
 0.2028
 0.3855
 0.2570
 0.2361
 0.2343
 0.3312
 0.2303
 0.3744
 0.4727
 0.3601
 0.2754
 0.1987
 0.3027
 0.3427
 0.2994
 0.2533
 0.2639
 0.3460
 0.3847
 0.4368
 0.3786
 0.3123
 0.2591
 0.3979
 0.2577
 0.3131
 0.2934
 0.3027
 0.2942
 0.2266
 0.2806
 0.2977
 0.1858
 0.2788
 0.2504
 0.3948
 0.3496
 0.2429
 0.2155
 0.2683
 0.4100
 0.3495
 0.4243
 0.2627
 0.3329
 0.2849
 0.3924
 0.3728
 0.2655
 0.3338
[torch.FloatTensor of size 256]
), (u'layer3.0.bn2.bias', Parameter containing:
-0.0264
 0.0995
-0.0068
-0.0877
 0.0078
 0.0407
-0.0307
 0.0060
 0.0017
 0.0478
 0.0630
 0.0358
-0.0504
 0.0214
-0.0090
-0.0337
-0.0455
-0.1924
-0.0676
 0.0775
-0.0340
-0.0799
 0.1314
-0.1273
-0.0628
-0.0055
-0.0915
-0.1757
-0.0083
-0.0945
 0.0025
-0.0319
-0.0158
 0.1437
-0.0035
 0.0108
-0.0511
 0.0358
 0.0878
-0.0452
-0.0458
 0.0147
 0.0687
 0.0168
-0.0477
 0.0568
 0.0460
-0.0507
 0.0059
-0.1034
 0.0103
-0.1052
-0.0166
-0.0192
-0.0345
 0.0201
-0.1362
 0.0396
-0.0088
-0.0108
-0.0298
 0.0721
-0.0669
-0.0094
-0.0310
-0.0267
-0.1418
 0.1190
 0.0669
-0.2137
 0.0427
 0.0478
 0.0339
 0.0001
-0.1482
-0.0237
-0.0743
-0.0684
-0.0201
 0.0147
-0.0396
 0.0194
-0.0696
-0.0558
 0.0080
 0.0236
-0.2578
 0.0064
-0.1004
 0.0280
 0.0152
-0.0484
-0.1536
 0.1049
 0.0499
 0.0657
-0.0541
 0.0077
 0.0941
-0.0200
-0.2356
-0.0623
 0.0334
 0.1102
 0.0770
-0.0325
 0.0481
-0.1499
-0.1650
 0.1230
 0.0712
 0.0589
-0.0482
-0.0972
-0.1860
 0.0853
-0.0516
-0.3080
-0.0604
-0.0771
-0.2728
 0.0289
-0.1328
 0.0173
-0.0392
 0.0542
-0.0372
-0.1528
-0.1766
 0.0839
 0.0693
-0.0826
 0.1118
-0.0508
-0.0448
-0.0375
 0.0304
-0.3782
 0.0149
 0.0068
-0.0521
-0.2950
 0.0899
 0.0296
 0.0199
-0.0835
-0.0964
-0.0238
 0.0349
-0.2663
-0.1618
 0.0736
 0.0276
-0.1109
-0.0103
-0.0975
 0.0140
 0.0108
 0.0784
 0.0131
-0.0395
 0.0248
-0.0774
-0.0284
 0.0104
-0.0423
-0.1663
-0.0949
-0.0343
 0.0455
-0.3000
-0.0069
 0.0141
-0.2615
-0.0736
-0.1063
-0.0105
-0.0712
-0.1034
-0.0298
-0.1428
-0.0517
-0.0571
-0.0544
-0.0423
-0.0085
 0.0159
-0.0654
-0.0613
-0.1450
 0.0399
 0.0816
-0.0078
-0.0341
 0.0320
-0.0448
-0.0703
 0.1021
-0.1799
-0.2117
-0.0598
-0.1160
 0.0393
-0.0454
-0.1845
-0.1085
 0.0558
-0.0636
 0.0168
 0.0002
 0.0799
-0.0672
 0.0798
-0.0040
-0.1902
 0.0200
 0.0732
 0.1032
-0.0264
 0.0240
-0.0442
 0.0229
 0.0234
-0.0235
 0.0105
-0.2149
-0.1281
-0.0183
-0.0006
-0.0516
 0.0566
-0.0543
 0.0141
-0.0499
 0.0673
 0.0517
-0.0040
 0.0351
 0.0828
 0.0100
 0.0592
-0.2043
-0.0762
 0.0414
 0.0775
 0.0760
-0.1592
-0.0836
-0.1663
 0.0023
-0.0685
 0.0381
-0.0987
-0.0203
 0.0154
-0.1055
[torch.FloatTensor of size 256]
), (u'layer3.0.downsample.0.weight', Parameter containing:
( 0 , 0 ,.,.) = 
  8.0862e-03

( 0 , 1 ,.,.) = 
 -1.9208e-02

( 0 , 2 ,.,.) = 
 -1.7272e-02
    ... 

( 0 ,125,.,.) = 
 -1.2758e-02

( 0 ,126,.,.) = 
  2.5496e-03

( 0 ,127,.,.) = 
  5.3547e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -1.4284e-02

( 1 , 1 ,.,.) = 
 -5.5428e-02

( 1 , 2 ,.,.) = 
 -3.4568e-02
    ... 

( 1 ,125,.,.) = 
  2.7476e-02

( 1 ,126,.,.) = 
  3.5964e-02

( 1 ,127,.,.) = 
  2.3994e-02
      ⋮  

( 2 , 0 ,.,.) = 
  7.6148e-03

( 2 , 1 ,.,.) = 
  2.0725e-02

( 2 , 2 ,.,.) = 
 -1.0066e-02
    ... 

( 2 ,125,.,.) = 
 -2.7756e-02

( 2 ,126,.,.) = 
  6.3956e-03

( 2 ,127,.,.) = 
 -2.2016e-03
...     
      ⋮  

(253, 0 ,.,.) = 
  3.3605e-02

(253, 1 ,.,.) = 
 -4.2383e-02

(253, 2 ,.,.) = 
  2.2568e-02
    ... 

(253,125,.,.) = 
 -3.3004e-02

(253,126,.,.) = 
 -9.1010e-04

(253,127,.,.) = 
 -1.7735e-02
      ⋮  

(254, 0 ,.,.) = 
 -1.1416e-02

(254, 1 ,.,.) = 
 -1.8309e-02

(254, 2 ,.,.) = 
  7.6073e-03
    ... 

(254,125,.,.) = 
  1.5128e-02

(254,126,.,.) = 
  3.3239e-02

(254,127,.,.) = 
  2.0724e-04
      ⋮  

(255, 0 ,.,.) = 
  6.2636e-03

(255, 1 ,.,.) = 
 -2.0036e-02

(255, 2 ,.,.) = 
  1.0343e-03
    ... 

(255,125,.,.) = 
 -1.9124e-02

(255,126,.,.) = 
  4.5483e-02

(255,127,.,.) = 
  7.8252e-03
[torch.FloatTensor of size 256x128x1x1]
), (u'layer3.0.downsample.1.running_mean', 
-0.1077
-0.1229
-0.0681
-0.1930
-0.0571
-0.0224
-0.0338
-0.2437
-0.0447
 0.0452
 0.0008
 0.0606
-0.0686
-0.0411
 0.0435
-0.0873
-0.2157
-0.1593
-0.0157
-0.0698
-0.1796
-0.0204
 0.0443
-0.1573
-0.0407
-0.1830
 0.0180
-0.0895
-0.0434
-0.2033
-0.0171
 0.1442
-0.0797
-0.1848
-0.0201
-0.0438
-0.1435
-0.0157
 0.0630
-0.0223
-0.1470
-0.0833
-0.1568
 0.0180
 0.0083
 0.1125
-0.0936
 0.0647
-0.1352
-0.1372
 0.1363
-0.1031
-0.1675
-0.2070
-0.0078
-0.0178
 0.1123
-0.0876
-0.1877
 0.0247
-0.2548
-0.1413
-0.0916
-0.1613
 0.0087
-0.2045
-0.0420
-0.0763
-0.0522
-0.0029
-0.0424
 0.1541
 0.0664
-0.0733
-0.0935
-0.0226
-0.1797
 0.0129
 0.0465
-0.1008
-0.0652
 0.0088
-0.0120
 0.0576
-0.0571
-0.0667
-0.0228
-0.0880
-0.0192
 0.0915
 0.0212
-0.2866
-0.1851
 0.0631
-0.0325
 0.0106
-0.0163
-0.1375
-0.0208
 0.0400
 0.0382
-0.1582
-0.0242
-0.0104
-0.0253
-0.0071
-0.0822
-0.0029
 0.0168
-0.1328
-0.0639
 0.0832
-0.0666
-0.0080
-0.0459
 0.0450
-0.1013
-0.0630
-0.0629
-0.1361
-0.0500
-0.0488
 0.1090
-0.0700
-0.0801
-0.1030
-0.0278
-0.1242
-0.0585
-0.0263
-0.0371
-0.0678
-0.1683
 0.0122
 0.0382
-0.0072
-0.0424
-0.0864
-0.0058
 0.0969
-0.2232
 0.0251
-0.0298
-0.0126
 0.0531
-0.2009
-0.2212
-0.0022
 0.0396
-0.0029
-0.1377
 0.0226
 0.0195
-0.1747
 0.0619
-0.1538
-0.0896
 0.0758
-0.0461
 0.0011
-0.0787
-0.0877
-0.2203
-0.0431
 0.0743
-0.1289
-0.0960
-0.0841
 0.0581
-0.1059
-0.1513
-0.0834
 0.0357
-0.0917
 0.0641
 0.0595
-0.1210
-0.0276
 0.0376
-0.0100
-0.1370
-0.0962
-0.2814
-0.1033
-0.0437
-0.0338
-0.0591
-0.0691
-0.0883
-0.0485
 0.0748
-0.0378
-0.0478
 0.0189
-0.0546
-0.0145
 0.0332
-0.0593
 0.0225
-0.1374
-0.1181
 0.0559
 0.0222
-0.0021
-0.0954
-0.0417
 0.0799
-0.1447
-0.0297
-0.0955
 0.0598
 0.0732
-0.0074
 0.0402
-0.0222
 0.0747
 0.0112
 0.1270
-0.0274
-0.0054
 0.0149
-0.0263
-0.0373
-0.0971
 0.0749
-0.1377
-0.1877
-0.0638
-0.1487
-0.0099
-0.0275
 0.0011
-0.0404
 0.0556
-0.1120
-0.1673
 0.0402
-0.1795
 0.0676
 0.0220
-0.0813
 0.0919
-0.0402
 0.0192
 0.0033
-0.0220
-0.1673
-0.1087
-0.1025
 0.0476
-0.1374
 0.0058
-0.0772
-0.0445
 0.0144
-0.1149
[torch.FloatTensor of size 256]
), (u'layer3.0.downsample.1.running_var', 
1.00000e-02 *
  1.3212
  1.3382
  0.6095
  2.3173
  1.0613
  1.3040
  1.8071
  2.2225
  0.5863
  0.8064
  0.9384
  2.0050
  1.3193
  4.3016
  1.6614
  0.8651
  1.6540
  2.5693
  0.8004
  0.5019
  2.7886
  0.3852
  0.7347
  1.5154
  2.1317
  2.9001
  2.1060
  0.6044
  1.1943
  1.3458
  1.3165
  2.4103
  1.0533
  1.7815
  1.4061
  2.1802
  0.9886
  1.1141
  1.2210
  1.3257
  1.8708
  1.6071
  1.4969
  1.2958
  1.1608
  0.9993
  0.6997
  2.5080
  1.0482
  1.4110
  1.8211
  2.3854
  2.4584
  2.0267
  1.9324
  1.6686
  2.3925
  1.3504
  1.9314
  2.4688
  2.2756
  1.3571
  1.4856
  2.4605
  2.7555
  2.8775
  0.8696
  0.6599
  1.0593
  1.0700
  0.9298
  1.9956
  2.2161
  2.2084
  1.6220
  1.1626
  1.5926
  0.7989
  1.0761
  1.2732
  2.0618
  1.4437
  1.5537
  1.8481
  2.0876
  0.9675
  0.4506
  1.4136
  0.8490
  1.2861
  1.2262
  3.4415
  1.4798
  0.5757
  0.8053
  0.8657
  1.2911
  2.3058
  1.4168
  0.9986
  1.1963
  1.5742
  2.0729
  0.9315
  1.1655
  1.1168
  1.1475
  1.6534
  1.7462
  0.9781
  1.7381
  1.0939
  1.1043
  1.3494
  0.7770
  0.5724
  1.8667
  1.0200
  1.1307
  0.8269
  0.9879
  1.1117
  1.4385
  2.3246
  2.5138
  0.9115
  1.0578
  0.7320
  1.6562
  1.4827
  0.5685
  3.4491
  1.9896
  2.0521
  0.9075
  1.2675
  1.0924
  2.6108
  1.0890
  0.6949
  2.2735
  0.7547
  1.6364
  1.0205
  0.7436
  1.3534
  1.5288
  2.5751
  0.7504
  0.9168
  2.3543
  0.7190
  0.8317
  1.2518
  1.4798
  1.1023
  1.5361
  0.4985
  0.6109
  0.9817
  1.3473
  1.6659
  2.8802
  0.3228
  1.5283
  1.3065
  1.9141
  1.0007
  2.0190
  1.4825
  1.1234
  0.6844
  1.4365
  0.9743
  2.1293
  1.5214
  1.3259
  0.6814
  1.2939
  0.6188
  0.6421
  0.7311
  2.2736
  0.8418
  1.9729
  1.0084
  1.9774
  2.2133
  0.7438
  1.1675
  2.6822
  0.6403
  0.8460
  1.2970
  1.1952
  0.9338
  1.1365
  1.6780
  0.8185
  1.0743
  1.6519
  2.0700
  0.9490
  1.9632
  1.3310
  1.1290
  0.5067
  1.5383
  1.1103
  2.8381
  1.1821
  1.1883
  1.5355
  2.1017
  1.1177
  1.0712
  0.7522
  1.4946
  1.2895
  0.5904
  0.4068
  2.0167
  1.5424
  1.0638
  0.3425
  1.1384
  3.0723
  0.7040
  3.0110
  1.8263
  0.6956
  0.5911
  0.8097
  1.8654
  0.6678
  1.8846
  1.3750
  0.6798
  0.8424
  1.5255
  1.4950
  1.3587
  2.0014
  1.5513
  0.9465
  0.5946
  2.3052
  1.8731
  0.9167
  0.9334
  1.4370
  1.1357
  1.1465
  1.0277
  1.0530
  1.7208
[torch.FloatTensor of size 256]
), (u'layer3.0.downsample.1.weight', Parameter containing:
 0.0674
 0.0514
 0.0385
 0.1692
 0.0604
 0.0460
 0.1209
 0.1110
 0.0418
 0.0387
 0.0442
 0.0707
 0.0790
 0.1094
 0.0959
 0.0544
 0.1032
 0.2190
 0.0459
 0.0372
 0.1410
 0.0587
 0.0360
 0.0955
 0.1657
 0.1024
 0.1417
 0.0580
 0.0536
 0.0716
 0.0865
 0.1110
 0.0511
 0.0515
 0.0809
 0.1154
 0.0777
 0.0449
 0.0490
 0.1056
 0.1457
 0.0744
 0.0530
 0.0600
 0.1026
 0.0486
 0.0408
 0.1312
 0.0639
 0.1062
 0.0915
 0.1476
 0.0900
 0.0742
 0.1069
 0.0776
 0.1423
 0.0495
 0.0974
 0.0661
 0.1292
 0.0548
 0.1145
 0.0950
 0.0921
 0.1579
 0.0496
 0.0236
 0.0398
 0.0935
 0.0291
 0.0653
 0.0885
 0.1190
 0.1692
 0.0692
 0.1316
 0.0606
 0.0480
 0.0654
 0.1082
 0.0624
 0.1103
 0.1106
 0.1076
 0.0400
 0.0723
 0.0947
 0.0662
 0.0464
 0.0444
 0.1727
 0.0921
 0.0345
 0.0451
 0.0374
 0.0940
 0.0818
 0.0397
 0.0452
 0.0985
 0.1095
 0.1072
 0.0506
 0.0444
 0.0755
 0.0420
 0.1046
 0.1172
 0.0447
 0.0459
 0.0409
 0.0539
 0.1036
 0.0741
 0.0311
 0.1086
 0.1746
 0.0777
 0.0689
 0.1100
 0.0489
 0.1048
 0.1097
 0.1025
 0.0448
 0.0675
 0.0707
 0.1364
 0.0438
 0.0346
 0.1769
 0.0667
 0.1155
 0.0628
 0.0873
 0.0406
 0.2890
 0.0703
 0.0428
 0.1173
 0.1049
 0.0611
 0.0469
 0.0400
 0.0744
 0.1003
 0.1012
 0.0599
 0.1078
 0.1512
 0.0322
 0.0430
 0.0977
 0.0951
 0.0838
 0.0958
 0.0448
 0.0263
 0.0425
 0.1154
 0.0771
 0.1781
 0.0300
 0.0699
 0.0724
 0.1600
 0.0893
 0.1130
 0.0534
 0.1359
 0.0375
 0.0809
 0.1145
 0.1232
 0.0942
 0.0880
 0.0346
 0.0996
 0.0461
 0.0694
 0.0630
 0.1590
 0.0509
 0.1254
 0.0590
 0.0744
 0.1084
 0.0514
 0.0931
 0.0848
 0.0240
 0.0279
 0.0993
 0.0612
 0.0599
 0.1095
 0.0508
 0.0658
 0.1162
 0.0833
 0.1651
 0.0505
 0.1231
 0.1228
 0.1038
 0.0369
 0.0756
 0.0415
 0.1192
 0.0292
 0.0839
 0.0577
 0.0951
 0.0944
 0.0309
 0.0390
 0.0604
 0.0672
 0.0501
 0.0383
 0.0946
 0.0958
 0.0501
 0.0243
 0.1074
 0.1908
 0.0693
 0.1376
 0.1151
 0.0329
 0.0647
 0.0616
 0.1106
 0.0358
 0.0721
 0.0851
 0.0375
 0.0368
 0.0947
 0.0464
 0.1666
 0.1049
 0.0755
 0.0398
 0.0249
 0.1528
 0.1167
 0.0886
 0.0540
 0.0726
 0.0736
 0.0797
 0.0854
 0.0609
 0.1263
[torch.FloatTensor of size 256]
), (u'layer3.0.downsample.1.bias', Parameter containing:
-0.0264
 0.0995
-0.0068
-0.0877
 0.0078
 0.0407
-0.0307
 0.0060
 0.0017
 0.0478
 0.0630
 0.0358
-0.0504
 0.0214
-0.0090
-0.0337
-0.0455
-0.1924
-0.0676
 0.0775
-0.0340
-0.0799
 0.1314
-0.1273
-0.0628
-0.0055
-0.0915
-0.1757
-0.0083
-0.0945
 0.0025
-0.0319
-0.0158
 0.1437
-0.0035
 0.0108
-0.0511
 0.0358
 0.0878
-0.0452
-0.0458
 0.0147
 0.0687
 0.0168
-0.0477
 0.0568
 0.0460
-0.0507
 0.0059
-0.1034
 0.0103
-0.1052
-0.0166
-0.0192
-0.0345
 0.0201
-0.1362
 0.0396
-0.0088
-0.0108
-0.0298
 0.0721
-0.0669
-0.0094
-0.0310
-0.0267
-0.1418
 0.1190
 0.0669
-0.2137
 0.0427
 0.0478
 0.0339
 0.0001
-0.1482
-0.0237
-0.0743
-0.0684
-0.0201
 0.0147
-0.0396
 0.0194
-0.0696
-0.0558
 0.0080
 0.0236
-0.2578
 0.0064
-0.1004
 0.0280
 0.0152
-0.0484
-0.1536
 0.1049
 0.0499
 0.0657
-0.0541
 0.0077
 0.0941
-0.0200
-0.2356
-0.0623
 0.0334
 0.1102
 0.0770
-0.0325
 0.0481
-0.1499
-0.1650
 0.1230
 0.0712
 0.0589
-0.0482
-0.0972
-0.1860
 0.0853
-0.0516
-0.3080
-0.0604
-0.0771
-0.2728
 0.0289
-0.1328
 0.0173
-0.0392
 0.0542
-0.0372
-0.1528
-0.1766
 0.0839
 0.0693
-0.0826
 0.1118
-0.0508
-0.0448
-0.0375
 0.0304
-0.3782
 0.0149
 0.0068
-0.0521
-0.2950
 0.0899
 0.0296
 0.0199
-0.0835
-0.0964
-0.0238
 0.0349
-0.2663
-0.1618
 0.0736
 0.0276
-0.1109
-0.0103
-0.0975
 0.0140
 0.0108
 0.0784
 0.0131
-0.0395
 0.0248
-0.0774
-0.0284
 0.0104
-0.0423
-0.1663
-0.0949
-0.0343
 0.0455
-0.3000
-0.0069
 0.0141
-0.2615
-0.0736
-0.1063
-0.0105
-0.0712
-0.1034
-0.0298
-0.1428
-0.0517
-0.0571
-0.0544
-0.0423
-0.0085
 0.0159
-0.0654
-0.0613
-0.1450
 0.0399
 0.0816
-0.0078
-0.0341
 0.0320
-0.0448
-0.0703
 0.1021
-0.1799
-0.2117
-0.0598
-0.1160
 0.0393
-0.0454
-0.1845
-0.1085
 0.0558
-0.0636
 0.0168
 0.0002
 0.0799
-0.0672
 0.0798
-0.0040
-0.1902
 0.0200
 0.0732
 0.1032
-0.0264
 0.0240
-0.0442
 0.0229
 0.0234
-0.0235
 0.0105
-0.2149
-0.1281
-0.0183
-0.0006
-0.0516
 0.0566
-0.0543
 0.0141
-0.0499
 0.0673
 0.0517
-0.0040
 0.0351
 0.0828
 0.0100
 0.0592
-0.2043
-0.0762
 0.0414
 0.0775
 0.0760
-0.1592
-0.0836
-0.1663
 0.0023
-0.0685
 0.0381
-0.0987
-0.0203
 0.0154
-0.1055
[torch.FloatTensor of size 256]
), (u'layer3.1.conv1.weight', Parameter containing:
( 0 , 0 ,.,.) = 
  4.8367e-02  4.8045e-02  3.8471e-02
  4.9888e-02  5.5208e-02  5.6701e-02
  2.4192e-02  1.3436e-02  2.4655e-02

( 0 , 1 ,.,.) = 
 -3.6542e-03 -3.1100e-03  4.9227e-03
 -1.2114e-03  3.4020e-03  1.9846e-02
 -2.1704e-02 -2.1158e-02 -2.8686e-03

( 0 , 2 ,.,.) = 
 -1.2536e-02 -2.0486e-02 -2.3154e-02
 -1.3515e-02 -2.3781e-02 -2.5515e-02
  1.0584e-02  7.2999e-03 -5.2329e-03
    ... 

( 0 ,253,.,.) = 
 -4.3596e-02 -1.8328e-02 -5.0577e-02
  1.6590e-02  5.0719e-02  2.1919e-02
 -1.9203e-02 -8.8315e-03 -2.0335e-02

( 0 ,254,.,.) = 
 -7.6949e-03 -1.5848e-02  1.5841e-03
 -6.2470e-03 -1.3135e-02  6.9092e-03
 -3.3791e-03  1.7889e-03  3.7373e-03

( 0 ,255,.,.) = 
 -6.6310e-03  5.8503e-03 -5.8571e-04
 -2.4600e-02 -8.9747e-03 -7.2466e-03
 -1.7566e-02 -8.5829e-03 -7.5220e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -2.3679e-02 -9.4399e-03 -1.1688e-02
 -2.4777e-02 -1.7326e-02 -3.1489e-02
 -3.3683e-03  9.7571e-03 -5.1527e-03

( 1 , 1 ,.,.) = 
 -3.0809e-02 -4.0685e-02 -2.2731e-02
 -5.1065e-03 -1.6457e-02 -1.8804e-02
  5.0382e-02  5.2054e-02  3.9185e-02

( 1 , 2 ,.,.) = 
 -3.7790e-02 -4.2234e-02 -2.9703e-02
 -6.4766e-03  2.6967e-03 -8.1736e-03
  3.7747e-02  5.5416e-02  2.5806e-02
    ... 

( 1 ,253,.,.) = 
 -2.7275e-02 -4.5364e-02 -3.9567e-02
  8.9827e-03  1.6150e-02  1.1675e-02
 -9.7209e-03 -3.6449e-02 -1.6842e-02

( 1 ,254,.,.) = 
  1.7824e-02  1.5013e-02  1.0225e-02
  5.4044e-03  1.1664e-02  6.4623e-03
  2.1803e-02  4.1795e-02  1.9234e-02

( 1 ,255,.,.) = 
 -2.6730e-04  1.5218e-03 -5.0352e-03
  2.5761e-02  2.7110e-02 -9.3395e-04
 -1.1949e-02 -7.5204e-03 -3.9370e-03
      ⋮  

( 2 , 0 ,.,.) = 
 -1.7447e-02 -1.8358e-02 -2.6020e-02
 -1.4074e-02 -1.1302e-02 -1.4814e-02
 -3.1460e-03 -1.8674e-02 -9.3350e-03

( 2 , 1 ,.,.) = 
 -5.1125e-03 -4.8036e-03  1.8139e-02
 -1.0524e-02 -1.5152e-02  2.3904e-03
  8.7093e-03  9.3810e-03  2.4203e-03

( 2 , 2 ,.,.) = 
 -7.6392e-03 -8.1496e-03 -1.5331e-02
 -8.0622e-03 -1.3383e-02 -1.3938e-02
 -1.6904e-02 -3.0059e-02 -1.8659e-02
    ... 

( 2 ,253,.,.) = 
  1.8390e-02 -2.6080e-03  9.3782e-03
 -6.4662e-04 -1.3146e-02  1.0045e-02
 -2.2293e-03 -1.4097e-02  1.7385e-02

( 2 ,254,.,.) = 
  3.0293e-04  2.9622e-03  1.0030e-02
 -5.7588e-03 -1.6943e-03  6.9988e-03
  9.8134e-03  1.4197e-02  5.9742e-03

( 2 ,255,.,.) = 
  2.8753e-03 -1.7814e-03  1.0873e-02
  1.5230e-02  4.5867e-03  1.6860e-02
  1.9536e-03  1.9503e-02  1.2168e-02
...     
      ⋮  

(253, 0 ,.,.) = 
  1.3983e-02  2.4598e-03 -7.4604e-03
 -2.2250e-02 -1.2757e-02 -2.8846e-03
 -1.0911e-02  7.5499e-03  8.6910e-03

(253, 1 ,.,.) = 
 -4.8463e-03 -8.3250e-03  1.3420e-02
 -6.2502e-03 -7.3982e-03  1.1153e-02
  4.0391e-03 -9.0354e-03 -7.5441e-03

(253, 2 ,.,.) = 
 -5.1627e-03 -8.9529e-03 -1.2414e-02
 -4.9261e-03 -3.5488e-03  2.1501e-03
 -1.1709e-02 -1.4984e-02 -1.9216e-03
    ... 

(253,253,.,.) = 
  1.5428e-02 -7.6036e-04 -1.3522e-03
 -3.4856e-02 -7.4478e-04 -6.5064e-03
 -9.1655e-03 -2.8467e-02 -4.8924e-02

(253,254,.,.) = 
  1.2207e-02  1.0519e-02 -8.4421e-03
 -2.5495e-02  2.8140e-03  1.6165e-03
 -1.8831e-02  1.2268e-02  1.5439e-02

(253,255,.,.) = 
 -1.3684e-02 -4.1732e-03  1.2609e-02
 -6.8834e-04  5.9757e-03 -1.0183e-02
  2.1559e-04 -1.3462e-02 -3.0114e-02
      ⋮  

(254, 0 ,.,.) = 
 -1.6186e-02 -6.4926e-02 -4.3146e-02
 -2.1790e-02 -4.9106e-02 -3.4568e-02
  4.0506e-02  4.2449e-02  6.1562e-02

(254, 1 ,.,.) = 
  3.5715e-03 -1.0916e-02 -2.2922e-02
 -2.4831e-03  6.4555e-03 -1.1316e-02
  1.6662e-03 -1.9145e-02 -2.3007e-02

(254, 2 ,.,.) = 
 -7.1243e-03 -4.2783e-05  4.9363e-03
 -1.5832e-02  4.0474e-03  4.5135e-04
 -4.7967e-03 -7.2164e-04 -1.7230e-02
    ... 

(254,253,.,.) = 
  1.1589e-02  7.7814e-04  6.3205e-03
  1.1360e-02 -6.2076e-03 -2.7689e-02
  2.6392e-02  2.3775e-03 -1.4937e-02

(254,254,.,.) = 
 -1.1237e-02 -2.6285e-03  9.1537e-03
 -8.2120e-03 -2.2236e-02  3.2917e-04
  5.5909e-03 -1.3858e-03  6.8947e-03

(254,255,.,.) = 
 -1.4783e-02 -1.0367e-02 -2.7472e-02
 -4.1090e-02 -3.8532e-02 -3.9202e-02
 -2.1614e-02 -3.4340e-02 -1.8542e-02
      ⋮  

(255, 0 ,.,.) = 
 -1.9492e-02 -1.6098e-02 -3.1792e-02
  2.5374e-02  4.6815e-02  2.7513e-02
  3.5903e-02  3.1892e-02  2.6156e-02

(255, 1 ,.,.) = 
  1.6856e-02  1.5645e-02  1.4189e-02
  2.2550e-02  3.0456e-02  1.6739e-02
 -2.3615e-04 -7.9501e-03 -1.9666e-03

(255, 2 ,.,.) = 
 -7.9060e-03 -4.7390e-03  1.6030e-03
  1.3802e-03 -8.5837e-03  6.9451e-03
  1.1407e-02 -5.9877e-03  1.3759e-02
    ... 

(255,253,.,.) = 
  4.0124e-03  2.9951e-02  1.1915e-02
 -4.3412e-02 -3.1776e-03 -2.7705e-02
 -1.6183e-02 -1.1247e-02 -3.5084e-02

(255,254,.,.) = 
  2.9837e-02  5.9935e-02  2.4631e-02
 -1.9571e-03  2.2415e-02 -1.5499e-02
  1.6075e-02  1.7850e-02 -1.8412e-02

(255,255,.,.) = 
 -4.3712e-03 -4.9032e-02 -2.1335e-02
 -5.2598e-03 -2.8579e-02 -2.2090e-02
  8.5126e-03  2.0862e-03  2.3301e-02
[torch.FloatTensor of size 256x256x3x3]
), (u'layer3.1.bn1.running_mean', 
-0.1025
-0.2592
-0.0965
-0.3407
-0.7097
-0.6031
-0.2141
-0.9031
-0.4035
-0.6407
-0.2497
-0.3583
-0.4565
-0.6490
-0.5170
-0.1349
-0.4850
-0.4739
-0.3153
-0.8209
-0.4225
-0.6206
-0.4559
-0.3368
-0.4792
-0.1458
-0.2748
-0.3980
-0.7130
-0.8394
-0.2738
-0.2684
-0.7559
-0.1212
-0.4390
-0.6971
-0.5034
-0.5667
-0.0881
-0.5308
-1.0779
-0.4657
-0.1016
-0.3251
 0.5384
-0.7573
-0.4718
-0.3475
-0.7198
 0.0478
-0.1387
-0.8780
-0.4057
-0.1151
 0.0992
-0.3888
-1.0015
-0.3866
-0.3267
-0.7324
 0.0908
-0.2760
-0.2759
-0.1892
-0.5036
-0.7406
-0.5314
-0.4804
-0.6063
-0.0027
-0.9185
-0.2444
-1.1849
-0.5390
 0.0826
-0.5177
-0.2814
-0.9467
-0.3946
-0.2202
-0.9325
-0.2205
-0.5632
-0.3165
-0.3471
-0.5694
-0.5109
-0.5890
-0.7838
-0.0023
-0.2396
-0.1672
-0.8411
-0.7307
-0.7261
-0.9349
-0.3716
-0.3562
-0.5137
 0.0200
-0.1683
-0.5633
-0.7860
 0.0991
-0.4193
-0.2072
 0.3579
-0.4102
-0.3668
-0.4049
-0.9005
-0.2777
-0.2725
 0.3941
-0.5075
-0.4530
-0.1478
-0.0221
-0.8574
-0.3104
-0.3454
-0.6428
-0.2709
-0.8565
-0.6260
 0.0389
-0.2254
-0.0605
-0.5984
-0.3643
-0.3485
 0.0256
-0.6499
-0.3053
-0.2398
-0.3982
-0.7215
-0.6537
 0.0768
-0.4554
-0.5362
-0.1021
-0.6464
-0.2658
-0.4985
-0.4319
-0.3855
-0.3943
-0.5918
-0.2335
-0.6772
-0.5162
 0.3806
-0.3896
-0.7292
-0.2207
-0.1687
-0.6623
 0.2850
 0.1726
-0.1974
-0.5586
-0.2524
 0.1773
-0.6096
-0.2281
-0.4691
-0.8133
 0.0092
-0.4920
-0.1768
 0.1288
-0.0693
-0.8397
 0.2613
-0.2188
-0.3190
-0.4868
-0.6609
-0.7675
-0.7933
-0.9342
-0.0691
-0.6616
-0.3705
-0.4538
-0.9279
 0.3324
-0.4950
 0.2669
-0.8139
-0.7909
-0.7892
-0.4672
-0.5917
-0.5463
-0.2896
-0.0226
-0.2722
-0.3747
 0.1202
-0.0338
 0.1891
-0.2435
-0.0226
-0.7646
-0.4016
-0.3116
 1.5396
-0.1373
-0.7532
-0.6100
-0.2439
-0.5319
-0.6603
-0.3199
-0.8471
-0.0484
 0.0830
-0.4584
-0.3889
-0.8163
-0.3322
-0.6670
-0.7744
-0.7010
 0.2128
-0.5624
-1.0360
-0.3098
 0.7000
-0.3580
-0.3484
-0.5161
-0.2167
-0.8903
-0.3402
-0.4037
-0.5501
-0.4197
-0.5290
-0.4974
 0.0083
-0.0166
-0.8607
-0.5581
-0.5161
-0.3668
-0.7363
-0.3654
-0.2788
-0.3890
-0.1521
-0.3327
-0.7903
-0.2531
[torch.FloatTensor of size 256]
), (u'layer3.1.bn1.running_var', 
 0.2021
 0.2649
 0.0816
 0.1141
 0.1276
 0.1230
 0.1780
 0.1393
 0.1235
 0.1178
 0.1281
 0.1505
 0.1060
 0.0954
 0.1147
 0.1260
 0.0831
 0.2214
 0.1452
 0.1260
 0.1203
 0.1507
 0.1066
 0.3038
 0.1444
 0.1266
 0.1966
 0.1145
 0.1376
 0.0991
 0.1222
 0.1343
 0.1066
 0.1148
 0.1946
 0.1589
 0.1715
 0.1588
 0.1577
 0.0995
 0.1036
 0.1305
 0.1547
 0.1623
 0.1437
 0.1624
 0.0856
 0.2183
 0.1339
 0.0807
 0.1528
 0.1277
 0.1413
 0.1200
 0.2567
 0.1202
 0.1523
 0.1513
 0.1002
 0.1453
 0.1620
 0.1270
 0.1179
 0.1004
 0.2034
 0.1578
 0.1785
 0.1181
 0.0674
 0.2460
 0.1251
 0.1144
 0.1670
 0.1460
 0.1625
 0.1203
 0.1697
 0.1065
 0.1415
 0.1694
 0.0909
 0.1133
 0.1569
 0.0880
 0.1333
 0.1711
 0.2421
 0.1188
 0.0882
 0.1084
 0.1373
 0.2886
 0.1736
 0.1740
 0.1512
 0.1086
 0.1211
 0.1523
 0.1453
 0.1735
 0.1515
 0.1348
 0.2445
 0.1433
 0.1422
 0.1520
 0.0985
 0.1292
 0.1372
 0.2228
 0.1265
 0.1538
 0.1600
 0.1121
 0.1922
 0.1195
 0.1100
 0.1151
 0.1431
 0.1258
 0.1416
 0.1049
 0.1840
 0.1158
 0.1111
 0.2187
 0.1193
 0.1541
 0.1074
 0.1350
 0.1385
 0.0990
 0.1418
 0.1837
 0.1667
 0.1712
 0.1567
 0.1542
 0.1501
 0.1585
 0.1422
 0.1527
 0.1179
 0.1882
 0.1856
 0.1549
 0.1798
 0.2879
 0.1156
 0.1749
 0.1297
 0.1522
 0.1308
 0.2123
 0.1579
 0.0937
 0.1310
 0.2052
 0.1510
 0.1542
 0.1416
 0.1203
 0.1372
 0.1980
 0.1352
 0.2065
 0.1385
 0.1358
 0.1696
 0.2816
 0.1058
 0.0886
 0.1123
 0.2269
 0.1117
 0.1080
 0.2029
 0.1026
 0.1150
 0.1452
 0.1180
 0.1690
 0.2079
 0.1133
 0.1933
 0.1454
 0.0872
 0.1002
 0.1101
 0.1757
 0.1967
 0.0907
 0.1175
 0.1508
 0.1348
 0.1203
 0.1413
 0.2189
 0.1030
 0.1387
 0.1669
 0.1090
 0.1632
 0.0875
 0.1349
 0.1074
 0.2839
 0.1628
 0.1872
 0.1538
 0.0973
 0.1831
 0.2120
 0.1716
 0.0890
 0.1869
 0.0877
 0.1300
 0.2792
 0.1565
 0.1605
 0.1427
 0.1366
 0.1441
 0.1080
 0.1166
 0.1286
 0.2491
 0.1250
 0.1469
 0.1387
 0.1164
 0.1255
 0.0991
 0.0942
 0.1549
 0.2844
 0.1235
 0.1733
 0.1828
 0.0891
 0.1104
 0.1286
 0.1495
 0.1249
 0.4629
 0.1380
 0.1015
 0.1064
 0.1612
 0.2148
 0.1442
 0.1714
 0.1601
 0.2572
 0.1879
[torch.FloatTensor of size 256]
), (u'layer3.1.bn1.weight', Parameter containing:
 0.2480
 0.1972
 0.2279
 0.2709
 0.3296
 0.2640
 0.2710
 0.3475
 0.2388
 0.2904
 0.2769
 0.3045
 0.2268
 0.2634
 0.2999
 0.2397
 0.2724
 0.2723
 0.2133
 0.3806
 0.2767
 0.2403
 0.2406
 0.2917
 0.2675
 0.2305
 0.2394
 0.3123
 0.2984
 0.3353
 0.2234
 0.1919
 0.3168
 0.2626
 0.2901
 0.2918
 0.3455
 0.2561
 0.2434
 0.2298
 0.3318
 0.3481
 0.2032
 0.2478
 0.2478
 0.2483
 0.3252
 0.2567
 0.2685
 0.1977
 0.2541
 0.4079
 0.2480
 0.2076
 0.2276
 0.2683
 0.2098
 0.2056
 0.2010
 0.3560
 0.2384
 0.3284
 0.1952
 0.2445
 0.2848
 0.3742
 0.2746
 0.2117
 0.3859
 0.4785
 0.3005
 0.2848
 0.3762
 0.2903
 0.2126
 0.1776
 0.2778
 0.3878
 0.3123
 0.1974
 0.2679
 0.2300
 0.2474
 0.2320
 0.2635
 0.2819
 0.2296
 0.3194
 0.3814
 0.2503
 0.2269
 0.2676
 0.3431
 0.3799
 0.3787
 0.2968
 0.3021
 0.2575
 0.3007
 0.1939
 0.1950
 0.3217
 0.3623
 0.2171
 0.2486
 0.2266
 0.2133
 0.2851
 0.2715
 0.2720
 0.3107
 0.2174
 0.2675
 0.2387
 0.3434
 0.2761
 0.2084
 0.2975
 0.3178
 0.2818
 0.2858
 0.3498
 0.2675
 0.2638
 0.3159
 0.2879
 0.1873
 0.2986
 0.3584
 0.2570
 0.1815
 0.2758
 0.2640
 0.2486
 0.2567
 0.2252
 0.3420
 0.2910
 0.2898
 0.2902
 0.2404
 0.2381
 0.3633
 0.2690
 0.3810
 0.2947
 0.2743
 0.4644
 0.3133
 0.2444
 0.3477
 0.3001
 0.1977
 0.2301
 0.2513
 0.2660
 0.3271
 0.1622
 0.2274
 0.2225
 0.3596
 0.3215
 0.1997
 0.2215
 0.2706
 0.2831
 0.2621
 0.3710
 0.2730
 0.2903
 0.1893
 0.2140
 0.2460
 0.3141
 0.2424
 0.3699
 0.2364
 0.2420
 0.2948
 0.2497
 0.2760
 0.2686
 0.2895
 0.3857
 0.1398
 0.2832
 0.3362
 0.2522
 0.2823
 0.2381
 0.2311
 0.3274
 0.4078
 0.2648
 0.2525
 0.3388
 0.3251
 0.2420
 0.2856
 0.3605
 0.2603
 0.2294
 0.2483
 0.2171
 0.2353
 0.4117
 0.2588
 0.2888
 0.1972
 0.2408
 0.2755
 0.3031
 0.2457
 0.2744
 0.3564
 0.2546
 0.3673
 0.2883
 0.2590
 0.3021
 0.2890
 0.3505
 0.2092
 0.2953
 0.3222
 0.2925
 0.2574
 0.3012
 0.3893
 0.2211
 0.2226
 0.3258
 0.3205
 0.2975
 0.2323
 0.3323
 0.2812
 0.2702
 0.2300
 0.2846
 0.3318
 0.2292
 0.3498
 0.2622
 0.3581
 0.4003
 0.2924
 0.3049
 0.3478
 0.2845
 0.2742
 0.2019
 0.2466
 0.2988
 0.2044
 0.2691
[torch.FloatTensor of size 256]
), (u'layer3.1.bn1.bias', Parameter containing:
-0.1332
-0.0644
-0.3239
-0.2390
-0.3262
-0.1796
-0.2087
-0.3208
-0.1874
-0.2988
-0.2099
-0.2283
-0.2141
-0.2460
-0.2768
-0.1351
-0.2498
-0.2393
-0.1223
-0.4590
-0.2172
-0.1220
-0.2101
-0.1779
-0.2426
-0.1546
-0.1549
-0.3716
-0.2817
-0.3886
-0.1545
-0.0687
-0.3412
-0.2261
-0.1961
-0.2242
-0.2984
-0.1381
-0.2251
-0.1658
-0.4534
-0.3226
-0.0977
-0.1349
-0.2619
-0.1428
-0.3960
-0.1633
-0.2101
-0.1161
-0.1448
-0.5502
-0.2179
-0.1246
 0.0502
-0.1902
-0.1047
-0.1000
-0.1411
-0.3124
-0.2190
-0.3062
-0.1247
-0.1557
-0.2973
-0.3825
-0.1951
-0.1381
-0.5761
-0.3879
-0.2808
-0.2542
-0.3470
-0.2460
-0.1091
-0.0562
-0.1833
-0.4956
-0.3059
-0.0988
-0.2255
-0.1958
-0.1320
-0.1738
-0.2287
-0.1926
-0.0924
-0.3427
-0.5489
-0.2431
-0.1935
-0.1641
-0.2503
-0.3274
-0.4008
-0.2824
-0.2694
-0.1939
-0.2413
-0.0309
-0.0880
-0.3421
-0.3104
-0.1102
-0.1539
-0.1233
-0.1780
-0.2715
-0.2005
-0.1846
-0.2843
-0.1117
-0.1816
-0.2119
-0.3304
-0.2267
-0.1413
-0.3376
-0.2674
-0.2524
-0.2554
-0.4735
-0.2342
-0.2130
-0.3282
-0.1966
-0.1063
-0.2615
-0.4234
-0.1374
-0.0811
-0.3069
-0.1538
-0.1453
-0.1612
-0.1631
-0.3759
-0.2608
-0.2382
-0.2499
-0.1485
-0.1487
-0.4328
-0.1377
-0.2781
-0.2259
-0.2072
-0.4165
-0.3582
-0.1382
-0.3598
-0.2672
-0.2090
-0.0177
-0.1279
-0.2812
-0.3621
 0.0476
-0.2232
-0.1272
-0.3237
-0.3008
-0.1119
-0.0839
-0.2426
-0.2000
-0.1873
-0.4685
-0.2000
-0.3462
-0.0706
-0.1973
-0.3548
-0.1975
-0.3537
-0.3546
-0.1433
-0.2052
-0.2722
-0.1528
-0.2798
-0.1945
-0.2474
-0.4910
 0.1322
-0.2378
-0.5166
-0.3959
-0.2354
-0.1266
-0.0810
-0.4132
-0.5576
-0.2238
-0.1563
-0.3950
-0.3283
-0.0846
-0.3103
-0.3130
-0.1498
-0.1396
-0.0972
-0.1620
-0.1631
-0.6364
-0.1350
-0.2345
-0.1049
-0.1625
-0.2878
-0.2450
-0.1468
-0.2035
-0.5358
-0.1683
-0.5524
-0.2511
-0.1230
-0.2305
-0.1925
-0.3759
-0.1014
-0.1697
-0.4002
-0.2980
-0.3035
-0.1563
-0.4660
-0.1155
-0.1665
-0.3382
-0.2935
-0.3122
-0.3015
-0.3261
-0.2542
-0.2037
-0.0955
-0.2070
-0.4370
-0.2051
-0.4205
-0.3125
-0.4845
-0.3528
-0.2624
-0.2894
-0.3976
-0.2107
-0.1791
-0.1075
-0.1213
-0.3022
 0.0516
-0.1928
[torch.FloatTensor of size 256]
), (u'layer3.1.conv2.weight', Parameter containing:
( 0 , 0 ,.,.) = 
 -4.2568e-02 -2.6148e-02 -2.2019e-02
 -1.7334e-02 -7.5950e-03 -7.2384e-03
 -1.7876e-03  2.3800e-02  1.4873e-02

( 0 , 1 ,.,.) = 
 -2.8277e-03 -5.0644e-03 -4.9442e-03
  1.2117e-03  1.4908e-02  1.6013e-02
  1.4391e-02  3.3109e-02  5.0061e-02

( 0 , 2 ,.,.) = 
 -3.4891e-03 -4.4437e-03  2.6589e-03
  1.5105e-02  2.6303e-02  2.6802e-02
  3.9232e-02  5.0057e-02  4.6637e-02
    ... 

( 0 ,253,.,.) = 
  2.2877e-02  1.5454e-02 -2.4483e-02
  3.1145e-02  3.4944e-02  1.3296e-02
 -1.7674e-04  7.3297e-03 -5.7174e-03

( 0 ,254,.,.) = 
 -2.1781e-02 -3.7379e-02 -1.3382e-02
  1.8976e-02  1.4155e-02 -6.5395e-03
  2.6831e-02  3.6354e-02  1.1450e-02

( 0 ,255,.,.) = 
  3.1603e-02  3.3933e-02  3.1575e-02
 -1.0098e-02 -1.2657e-02  1.1674e-02
  1.0325e-02  7.9424e-05  1.5911e-02
      ⋮  

( 1 , 0 ,.,.) = 
  2.5937e-02  6.2590e-03  6.0798e-03
 -4.5745e-03 -3.5188e-02 -2.9249e-02
  2.1366e-02  2.0480e-03  6.2699e-03

( 1 , 1 ,.,.) = 
 -2.9549e-03 -1.3679e-03 -8.6876e-03
  7.9988e-03  1.2888e-03 -5.9629e-03
 -9.1481e-03 -2.1914e-02 -4.1572e-02

( 1 , 2 ,.,.) = 
  7.6390e-03  3.0253e-03  2.7817e-04
  7.0329e-03  1.1914e-02 -2.4419e-03
 -8.2131e-03 -9.7848e-05 -1.9223e-02
    ... 

( 1 ,253,.,.) = 
 -4.4498e-03  5.1611e-03  3.7416e-03
  3.2110e-04  8.3762e-03  3.6612e-03
  9.3343e-03  8.1829e-03  1.1234e-03

( 1 ,254,.,.) = 
 -6.6849e-02 -5.9871e-02 -3.3931e-02
  2.2337e-02  3.1932e-02  3.7244e-02
  9.3296e-03  3.7222e-02  1.4052e-02

( 1 ,255,.,.) = 
 -2.0643e-03  1.2408e-02 -3.1072e-03
 -8.2882e-03  1.3917e-02 -2.0680e-02
 -1.9329e-02  1.1953e-02 -2.3436e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -1.7788e-03 -3.5982e-03 -1.2592e-03
 -1.5320e-02 -1.0690e-02 -2.0311e-02
 -3.4649e-04 -2.2188e-03 -1.5021e-02

( 2 , 1 ,.,.) = 
 -2.8952e-02 -3.3958e-02 -2.5437e-02
 -1.5919e-04  1.5204e-02  3.4554e-02
  3.6892e-02  7.0144e-02  7.3610e-02

( 2 , 2 ,.,.) = 
  1.0721e-02  2.1531e-03 -5.6155e-03
  1.1754e-02 -4.8546e-03 -5.5013e-03
 -3.7388e-04 -9.7639e-03 -1.5029e-02
    ... 

( 2 ,253,.,.) = 
  1.5622e-02  9.8976e-03  3.4725e-03
  1.4711e-02  7.0707e-03 -9.1826e-03
  7.0986e-03  6.3087e-03 -3.5893e-03

( 2 ,254,.,.) = 
 -6.4518e-03 -6.7673e-03  1.1635e-02
  1.4707e-02  2.3831e-02  4.9396e-02
  1.8897e-02  3.4981e-02  4.5488e-02

( 2 ,255,.,.) = 
  1.5900e-02  3.3369e-02  2.6194e-02
  1.0616e-02  1.8515e-02  3.0190e-03
  1.1004e-02  2.5503e-02  1.3654e-02
...     
      ⋮  

(253, 0 ,.,.) = 
 -2.1231e-02 -1.2804e-02 -1.5498e-02
  7.6750e-03  1.2120e-02  1.5099e-02
  1.8536e-02  2.5110e-02  2.5283e-02

(253, 1 ,.,.) = 
  7.4059e-03 -3.0540e-03 -1.5475e-03
 -8.4415e-03 -2.2002e-02 -3.4099e-03
  9.1918e-03  2.2617e-03 -1.4260e-02

(253, 2 ,.,.) = 
 -5.2568e-03 -5.3507e-03 -3.2230e-03
 -1.5805e-02  6.0508e-03 -1.5917e-03
 -8.9323e-03  2.6483e-03  5.0508e-03
    ... 

(253,253,.,.) = 
  1.9826e-02 -2.1209e-03  1.4889e-02
  5.7275e-02  3.5549e-02  6.0175e-03
  2.3347e-02 -2.2153e-02 -2.5497e-02

(253,254,.,.) = 
 -1.3985e-02 -6.4766e-02 -1.7286e-02
  1.1704e-02  1.0714e-02  4.6278e-02
 -1.0038e-02 -3.5707e-03  2.2691e-02

(253,255,.,.) = 
 -8.3342e-03 -1.3070e-03 -1.0049e-02
  3.2605e-02  5.3259e-02  2.2172e-02
  3.7339e-02  6.1155e-02  4.4555e-02
      ⋮  

(254, 0 ,.,.) = 
 -1.6584e-02 -1.3850e-02 -1.4604e-02
 -1.7604e-02 -2.1268e-02 -1.6734e-02
 -6.0039e-04  3.8569e-03  1.2837e-02

(254, 1 ,.,.) = 
  1.7623e-02  2.3706e-02  2.7633e-02
 -2.2841e-02 -1.9576e-02 -1.6551e-02
 -8.0822e-03  4.3779e-03 -5.3622e-03

(254, 2 ,.,.) = 
  1.5582e-02  3.7879e-02  2.3555e-02
 -6.4632e-03  9.8620e-03  1.2121e-02
 -1.3743e-02 -6.1246e-03 -2.7332e-03
    ... 

(254,253,.,.) = 
 -2.5037e-03 -1.2064e-02 -9.0989e-03
 -4.7911e-04 -2.8339e-03  2.1365e-03
 -6.2077e-03 -2.6615e-03  1.1215e-02

(254,254,.,.) = 
 -8.1794e-03 -2.2417e-02 -3.4012e-02
 -2.8553e-02 -2.9546e-02 -4.4372e-02
 -5.0348e-02 -3.4973e-02 -5.2028e-02

(254,255,.,.) = 
  1.4728e-02  3.2834e-02  2.6312e-02
  1.3449e-02  2.6407e-02  2.6924e-02
  2.5572e-02  3.4316e-02  2.6184e-02
      ⋮  

(255, 0 ,.,.) = 
  7.2026e-03 -2.3931e-03  2.2182e-03
  4.2555e-03 -6.4084e-03  7.8548e-03
  2.0510e-02  1.8644e-02  2.3280e-02

(255, 1 ,.,.) = 
 -1.2471e-02  1.3008e-02  1.0010e-02
 -1.7496e-03  6.1331e-03  4.3366e-03
  5.2269e-03  1.5111e-02 -8.1881e-03

(255, 2 ,.,.) = 
 -3.7337e-02  1.9923e-02 -2.4149e-02
 -4.9487e-02 -1.0510e-02 -4.2107e-02
 -5.7684e-03 -4.8632e-03 -1.8332e-02
    ... 

(255,253,.,.) = 
  7.2013e-03 -1.5208e-02 -1.6507e-02
 -8.8276e-03 -1.8698e-02 -1.6637e-03
 -1.2015e-02  2.9667e-03  6.2300e-03

(255,254,.,.) = 
 -1.8341e-02 -9.0521e-03  2.6030e-02
  3.5930e-02  5.3049e-02  5.8487e-02
 -1.3661e-02 -3.6888e-03 -7.1606e-03

(255,255,.,.) = 
 -1.2594e-02 -4.0898e-02  1.7162e-03
 -1.7420e-02 -4.3435e-02 -1.3183e-02
 -3.7506e-02 -5.5707e-02 -3.0051e-02
[torch.FloatTensor of size 256x256x3x3]
), (u'layer3.1.bn2.running_mean', 
-0.0823
-0.0332
-0.0266
-0.0132
-0.0638
-0.1047
-0.0671
-0.0530
 0.0623
-0.0001
-0.0130
 0.0178
-0.0493
-0.0653
-0.0985
 0.2112
-0.0922
-0.1139
-0.1879
-0.0822
-0.0585
-0.5599
-0.0512
-0.1987
-0.0715
-0.0665
-0.1684
-0.1031
 0.1054
-0.2306
-0.0339
-0.0807
-0.0035
 0.0472
-0.0788
-0.1265
-0.0615
 0.0643
 0.0278
 0.0031
-0.0767
-0.0951
 0.0001
-0.0472
-0.0309
-0.0464
-0.0633
-0.0814
-0.0705
-0.0671
-0.0792
-0.1778
 0.0551
 0.4111
 0.0016
-0.0799
-0.0692
-0.0498
 0.0038
 0.0025
 0.0356
-0.0258
-0.1225
-0.0464
-0.1216
-0.0643
-0.1383
-0.0232
-0.0181
-0.1470
 0.0488
-0.0557
-0.0348
-0.0566
-0.0651
-0.1047
-0.0526
-0.1851
-0.1060
 0.0265
 0.0717
-0.0200
-0.1123
-0.2006
-0.1032
 0.0041
-0.2242
-0.1273
-0.0887
 0.1082
-0.0589
-0.0834
-0.1046
 0.0230
-0.0885
 0.0335
-0.1107
-0.0092
-0.0460
-0.1370
-0.2022
 0.0463
-0.0197
-0.0119
-0.0600
-0.0751
-0.0727
-0.0911
-0.0921
-0.0580
-0.0364
-0.0447
-0.1709
-0.1368
-0.1476
-0.1476
-0.1123
-0.2308
-0.0906
-0.2593
-0.2083
-0.0634
-0.2680
-0.1612
-0.1003
-0.1318
-0.0904
-0.0967
-0.1973
 0.0535
-0.0278
-0.0744
-0.0563
-0.0591
-0.0241
-0.1510
 0.0022
-0.1889
-0.1289
-0.0196
-0.0728
-0.1840
-0.0609
-0.0200
-0.4031
-0.0734
-0.0960
-0.0865
-0.0683
-0.1690
-0.0987
 0.0124
-0.0443
-0.1937
-0.1329
-0.1207
-0.1423
 0.1048
-0.0854
 0.0638
-0.0578
-0.0865
 0.0336
-0.3877
-0.0574
-0.0753
-0.2072
-0.1827
-0.1238
-0.2206
-0.1645
-0.0293
-0.1309
-0.1585
-0.0439
-0.1387
-0.0617
-0.0198
-0.1220
-0.0763
-0.3562
 0.3413
-0.0658
-0.1264
-0.1754
 0.0417
-0.0362
-0.1289
-0.2704
-0.2141
 0.0194
 0.0131
-0.0095
-0.0603
-0.0342
-0.0799
-0.3172
-0.0341
-0.1697
-0.1221
-0.3093
-0.1225
-0.0283
-0.1518
-0.0933
-0.2834
-0.0030
-0.0359
 0.0030
-0.0460
-0.0855
-0.0382
-0.0174
-0.0826
-0.1509
-0.1769
-0.1501
 0.0015
-0.0877
-0.0333
-0.2545
-0.0130
-0.0469
-0.0884
-0.0899
-0.1911
-0.1313
-0.0350
-0.1149
-0.1889
-0.0409
-0.3819
-0.0897
-0.1702
-0.1546
 0.0307
-0.0409
-0.0370
-0.0691
-0.0420
 0.0535
-0.1312
-0.1199
-0.0578
-0.0546
-0.1234
-0.1162
-0.1232
-0.2521
-0.0410
-0.1056
-0.0522
-0.2415
-0.0947
-0.1564
-0.1230
[torch.FloatTensor of size 256]
), (u'layer3.1.bn2.running_var', 
1.00000e-02 *
  1.8530
  2.6394
  1.2856
  1.2689
  1.4751
  1.5978
  1.2460
  1.8145
  1.9383
  1.1628
  0.7526
  1.1219
  3.4934
  1.7682
  2.0756
  2.5356
  2.3623
  1.9827
  2.2904
  3.4381
  1.9890
  5.3809
  3.1563
  1.9644
  1.2794
  1.9174
  1.9996
  2.8697
  1.8158
  2.7271
  1.1315
  1.1837
  2.1068
  0.8485
  1.6900
  1.5894
  1.2585
  1.5643
  0.9987
  0.8934
  1.8547
  1.5648
  0.8220
  1.3122
  1.1694
  1.0160
  1.0536
  2.4400
  1.3983
  1.6112
  1.1215
  1.6260
  2.9490
  3.5517
  1.4957
  2.0074
  1.7436
  1.1895
  2.0108
  3.5077
  1.8778
  1.2123
  1.3372
  2.3718
  2.4176
  1.7590
  2.8278
  1.4679
  1.0504
  1.6922
  2.4693
  1.8485
  1.0362
  1.6711
  1.3731
  2.2465
  1.1501
  2.4804
  1.2025
  1.2570
  2.1939
  1.6975
  1.7424
  2.1701
  1.7643
  1.9817
  2.3719
  1.2252
  2.7208
  6.0497
  1.1410
  1.2758
  1.9986
  1.9867
  2.2465
  1.9493
  1.6528
  2.3030
  1.8762
  2.0904
  2.1493
  2.4125
  1.2632
  1.4381
  1.2692
  0.9812
  1.6465
  1.6313
  4.0332
  1.5335
  1.4138
  0.5016
  3.3883
  1.5893
  2.2616
  1.2452
  1.7113
  4.5386
  1.6545
  3.1452
  4.1772
  2.2630
  2.4911
  1.6146
  1.9939
  1.0476
  2.7228
  1.4376
  2.7456
  1.1228
  0.9946
  0.9961
  2.0141
  1.8478
  0.9278
  2.0743
  0.8191
  2.8920
  1.5118
  1.3835
  1.6313
  2.1079
  1.2747
  1.3377
  4.0637
  2.5386
  2.1835
  1.5742
  0.8617
  1.8719
  3.4042
  0.9114
  0.6896
  2.1932
  2.0435
  3.3022
  2.0678
  1.2721
  4.0421
  1.4042
  1.4963
  1.6277
  4.7124
  5.3335
  1.4413
  1.6945
  2.4771
  2.2726
  1.6246
  3.9784
  2.5942
  0.6863
  1.6802
  2.0793
  1.8885
  2.3745
  1.5412
  2.2586
  1.8481
  2.0519
  2.9992
  5.0411
  1.8868
  1.7426
  1.4016
  1.8388
  2.3564
  4.0373
  6.9144
  2.7295
  2.0721
  1.6795
  2.3665
  1.8622
  1.4306
  1.1317
  4.2427
  1.4678
  2.1902
  4.3384
  4.4179
  1.1020
  1.7952
  1.4674
  1.5806
  2.5305
  2.3667
  2.1030
  1.1405
  1.9686
  1.1575
  1.3539
  0.9093
  2.0994
  2.3689
  2.5597
  3.3564
  1.6578
  1.5100
  1.3169
  2.9548
  2.6140
  1.6542
  1.3860
  1.1822
  2.0687
  1.8049
  0.9810
  1.6161
  3.9758
  1.1737
  3.2446
  1.3650
  2.2535
  1.7262
  1.2099
  0.9317
  1.1607
  1.1387
  1.9526
  1.4283
  1.0255
  2.0608
  1.1115
  1.6965
  1.3392
  2.2404
  2.1118
  3.9554
  0.7481
  2.4169
  1.2689
  3.6180
  1.6522
  1.8249
  1.6171
[torch.FloatTensor of size 256]
), (u'layer3.1.bn2.weight', Parameter containing:
 0.1971
 0.1771
 0.1303
 0.1995
 0.1839
 0.0934
 0.2333
 0.2236
 0.1654
 0.1280
 0.0842
 0.1085
 0.3168
 0.2032
 0.3246
 0.2184
 0.3208
 0.2824
 0.3408
 0.3339
 0.3307
 0.5571
 0.2821
 0.3081
 0.2114
 0.2971
 0.2361
 0.5500
 0.1221
 0.3381
 0.1528
 0.1544
 0.1982
 0.0582
 0.1812
 0.2489
 0.1954
 0.0705
 0.0918
 0.1328
 0.2616
 0.2013
 0.0720
 0.1573
 0.1919
 0.0813
 0.1170
 0.2504
 0.2863
 0.3032
 0.1476
 0.3696
 0.1870
 0.2097
 0.1907
 0.2364
 0.1642
 0.1079
 0.2531
 0.1703
 0.1266
 0.0814
 0.2407
 0.2609
 0.2705
 0.2128
 0.5007
 0.2375
 0.0802
 0.2896
 0.1776
 0.0887
 0.1094
 0.1834
 0.2812
 0.1971
 0.2021
 0.3443
 0.1411
 0.1362
 0.2676
 0.1618
 0.2723
 0.2727
 0.2528
 0.0982
 0.4707
 0.2239
 0.3649
 0.1987
 0.0815
 0.2543
 0.3322
 0.1561
 0.2336
 0.1294
 0.2570
 0.1700
 0.1374
 0.2215
 0.5015
 0.3132
 0.1487
 0.1174
 0.0916
 0.2130
 0.1393
 0.3057
 0.5634
 0.1018
 0.0994
 0.0492
 0.4427
 0.3142
 0.4002
 0.1334
 0.2174
 0.5522
 0.2806
 0.2784
 0.4333
 0.2602
 0.3788
 0.1827
 0.2664
 0.1077
 0.3001
 0.2428
 0.5130
 0.0829
 0.1254
 0.1996
 0.1451
 0.2253
 0.1467
 0.3712
 0.0794
 0.5425
 0.2058
 0.2103
 0.1288
 0.4993
 0.1815
 0.1845
 0.4154
 0.3817
 0.2054
 0.2205
 0.1471
 0.4964
 0.4202
 0.0801
 0.0623
 0.3536
 0.2760
 0.3840
 0.1632
 0.1402
 0.2674
 0.0844
 0.2305
 0.2259
 0.2146
 0.4181
 0.2821
 0.2926
 0.3416
 0.4640
 0.3025
 0.3732
 0.5871
 0.0616
 0.2797
 0.3042
 0.2173
 0.3550
 0.2096
 0.2449
 0.3428
 0.2868
 0.3543
 0.4667
 0.3220
 0.3805
 0.2632
 0.2160
 0.1924
 0.4074
 0.4966
 0.3623
 0.1670
 0.1321
 0.2374
 0.2118
 0.1522
 0.1668
 0.3836
 0.0983
 0.3729
 0.3943
 0.4353
 0.2270
 0.1508
 0.3133
 0.3850
 0.5774
 0.1892
 0.2822
 0.0907
 0.2364
 0.0964
 0.2360
 0.0699
 0.2938
 0.5100
 0.3348
 0.2339
 0.1145
 0.2155
 0.2266
 0.2829
 0.2341
 0.1891
 0.2906
 0.2681
 0.3876
 0.3915
 0.1844
 0.1889
 0.4405
 0.1405
 0.3460
 0.2724
 0.2567
 0.2785
 0.1148
 0.1607
 0.1754
 0.0883
 0.1649
 0.1268
 0.2356
 0.2811
 0.0766
 0.1424
 0.1683
 0.3979
 0.2685
 0.6383
 0.1087
 0.3180
 0.1760
 0.3634
 0.2615
 0.1999
 0.2541
[torch.FloatTensor of size 256]
), (u'layer3.1.bn2.bias', Parameter containing:
-0.0162
-0.2033
 0.0294
-0.1697
-0.1840
-0.0309
-0.2039
-0.1426
-0.0443
-0.0886
-0.0647
-0.0968
-0.0380
-0.2073
-0.3061
 0.1443
-0.3079
-0.1232
-0.1627
-0.0980
-0.2471
-0.2837
-0.1201
-0.2893
-0.2303
-0.3562
-0.0825
-0.3483
 0.0707
-0.1321
-0.1074
-0.1451
 0.0235
 0.0225
-0.1885
-0.2507
-0.2461
 0.0631
-0.0023
-0.1209
-0.2581
-0.1640
-0.0172
-0.1143
-0.2096
-0.0158
 0.0128
-0.1332
-0.3139
-0.2294
-0.1527
-0.3503
 0.2086
 0.0785
-0.1597
-0.1990
 0.0346
 0.0388
-0.1269
 0.1019
 0.0981
-0.0390
-0.2537
-0.1356
-0.1796
-0.2422
-0.4517
-0.3124
-0.0177
-0.2615
-0.1567
 0.0212
-0.0753
-0.1426
-0.2788
 0.0062
-0.1895
-0.2327
-0.1298
-0.1200
-0.1917
-0.0987
-0.1916
-0.1666
-0.2729
 0.1287
-0.4620
-0.2259
-0.2270
 0.1939
 0.0230
-0.3303
-0.3202
-0.1292
-0.0716
 0.0048
-0.2579
-0.0116
-0.0557
-0.1229
-0.4804
-0.2351
-0.1367
-0.0578
-0.0537
-0.2743
-0.0827
-0.1922
-0.3481
-0.0358
-0.1094
 0.0138
-0.1888
-0.2592
-0.3293
-0.0820
-0.1839
-0.1636
-0.3163
-0.0246
-0.1667
-0.1653
-0.3076
-0.2229
-0.1834
-0.0536
-0.0621
-0.1752
-0.5243
-0.1933
-0.1119
-0.2283
-0.0437
-0.1777
-0.1300
-0.2519
-0.0456
-0.6305
-0.1364
-0.2138
 0.0406
-0.5287
-0.2014
-0.1442
-0.1930
-0.3033
 0.1030
-0.1499
-0.2297
-0.5301
-0.2543
-0.0417
 0.0429
-0.3218
-0.1611
-0.2562
-0.1187
-0.1001
 0.0225
 0.0996
-0.2138
-0.2019
 0.0808
-0.0121
-0.2364
-0.3247
-0.1482
-0.4846
-0.3449
-0.1365
-0.6664
 0.0418
-0.2807
-0.0961
-0.2378
-0.1834
-0.1890
-0.0377
-0.3056
-0.1843
-0.1357
-0.3038
-0.2680
-0.4143
-0.2633
-0.1750
-0.1856
-0.2405
-0.1082
-0.2250
-0.1268
-0.1094
 0.0594
-0.1419
-0.1178
-0.1602
-0.0328
-0.0194
-0.1985
 0.0470
-0.1887
-0.2776
-0.0930
-0.4092
-0.3378
-0.7252
 0.0260
-0.1829
 0.0561
-0.2227
-0.0026
-0.3218
-0.0093
-0.2843
-0.5121
-0.2337
-0.0836
-0.0818
-0.1296
-0.2090
 0.0169
-0.1899
-0.1892
-0.3075
-0.3108
-0.2986
-0.4712
-0.1823
-0.1893
-0.3131
-0.0876
-0.1166
-0.2995
-0.0831
-0.3427
-0.0772
-0.1460
-0.1611
 0.0203
-0.0627
-0.0610
-0.2574
-0.1383
 0.0470
-0.0302
-0.1638
-0.3323
-0.1741
-0.6307
-0.0772
-0.2123
-0.1559
-0.0459
-0.2416
-0.0143
-0.2079
[torch.FloatTensor of size 256]
), (u'layer4.0.conv1.weight', Parameter containing:
( 0 , 0 ,.,.) = 
 -1.1645e-02 -1.9010e-02 -2.1876e-02
  2.0482e-02  2.3962e-02  2.9161e-02
  4.3672e-02  3.3278e-02  4.9908e-02

( 0 , 1 ,.,.) = 
 -7.4040e-03  2.8083e-03 -4.7339e-03
  6.9030e-03  1.4271e-02 -3.6954e-03
 -3.1341e-03  1.3736e-02  1.6127e-03

( 0 , 2 ,.,.) = 
  1.8676e-02 -1.0553e-02 -1.4233e-02
  8.9944e-03 -2.5068e-03 -1.2145e-02
 -4.9455e-03 -2.9206e-02 -9.6385e-03
    ... 

( 0 ,253,.,.) = 
 -1.2655e-02  1.7691e-02  9.8264e-04
  7.4271e-03  7.6115e-03  1.1135e-02
  2.3242e-02  1.1058e-02  4.0498e-03

( 0 ,254,.,.) = 
  1.8557e-02  1.2472e-02  1.7220e-02
 -4.8544e-03  8.3627e-03  2.2811e-02
 -5.1675e-03  2.3264e-02  3.4068e-02

( 0 ,255,.,.) = 
  2.4934e-02  2.2373e-02  4.2614e-02
  1.3486e-02  1.6760e-03  1.3019e-02
 -6.2821e-03 -1.5112e-03 -8.9229e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -9.8089e-04 -6.3011e-03  5.9932e-03
  1.5936e-02  1.3394e-02  2.9934e-02
  2.3149e-02  2.0709e-02  2.5485e-02

( 1 , 1 ,.,.) = 
 -2.0015e-02 -3.3349e-02 -8.0396e-03
 -7.2800e-03 -1.2187e-02 -2.0389e-04
 -1.3138e-02 -2.0427e-02 -1.6286e-02

( 1 , 2 ,.,.) = 
 -6.7681e-03  5.0045e-03 -2.6683e-03
 -2.1073e-02  2.8275e-04 -1.8205e-02
 -1.7382e-02 -5.0244e-03 -3.0386e-03
    ... 

( 1 ,253,.,.) = 
 -1.1035e-02 -2.2964e-02 -1.1028e-02
 -6.3256e-03 -4.1667e-03 -1.7323e-02
 -1.3611e-02 -2.3468e-02 -1.6436e-02

( 1 ,254,.,.) = 
  7.3663e-03  6.6219e-03  5.2776e-03
 -3.5464e-03  3.2750e-03 -9.1126e-03
  3.5593e-04 -1.0151e-02 -1.9123e-02

( 1 ,255,.,.) = 
  1.8193e-03  8.8087e-03  5.1361e-03
  3.1915e-03  2.5287e-02  2.4939e-02
  1.3968e-02  1.9613e-02  2.2382e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -4.1548e-03  8.8964e-03  2.0143e-03
  1.1327e-02  1.3251e-02  1.4014e-02
  7.2196e-03  1.3045e-02  2.4827e-02

( 2 , 1 ,.,.) = 
 -1.5025e-02  5.0530e-03  7.4766e-03
 -2.4685e-02 -1.6732e-02 -1.0888e-02
 -2.8064e-02 -1.1875e-02 -3.4120e-03

( 2 , 2 ,.,.) = 
  2.8449e-02  1.4594e-02  6.9441e-03
  2.4799e-02  1.9453e-02  1.1294e-02
 -1.0787e-02 -2.1006e-02 -1.0372e-02
    ... 

( 2 ,253,.,.) = 
  1.4967e-02  8.2449e-03  2.0244e-03
  1.4287e-02 -6.3867e-03 -8.0757e-03
  2.7547e-02  1.0791e-02  1.6567e-02

( 2 ,254,.,.) = 
  3.6191e-02  3.8918e-02  3.9028e-02
 -8.3489e-04  1.3273e-02  2.0172e-02
 -2.0652e-02 -5.4010e-03  1.7147e-03

( 2 ,255,.,.) = 
  2.0373e-04  3.5919e-03  8.5592e-03
  6.2363e-03 -9.3086e-05  1.2940e-02
  1.3152e-02  1.0732e-02  1.9896e-02
...     
      ⋮  

(509, 0 ,.,.) = 
 -1.7400e-02 -6.7019e-03 -9.1787e-03
 -9.9672e-03  2.6298e-04  3.3439e-03
  1.5721e-02  1.4216e-02  2.0509e-02

(509, 1 ,.,.) = 
  2.1410e-02  3.6914e-02  2.8239e-02
  3.8158e-02  4.8944e-02  3.4652e-02
  3.1723e-02  4.4208e-02  4.0035e-02

(509, 2 ,.,.) = 
 -3.3437e-03 -1.0482e-02 -5.3990e-03
 -5.3186e-03  1.1394e-02  1.7593e-03
 -5.6652e-03 -6.6373e-03 -1.3492e-02
    ... 

(509,253,.,.) = 
 -1.7099e-02 -1.8145e-03 -1.3040e-02
 -2.2750e-02 -3.6062e-03 -8.0294e-03
 -1.6087e-02 -1.0175e-02 -1.3529e-02

(509,254,.,.) = 
  4.1701e-04 -5.1785e-03 -2.1884e-02
  2.6919e-03  8.9139e-03 -1.4217e-04
 -7.3746e-03 -6.6853e-03 -2.3725e-02

(509,255,.,.) = 
  1.9425e-02  1.3175e-02  1.7511e-02
  1.8235e-02  4.4286e-02  2.3767e-02
  2.6504e-02  3.3104e-02  1.9696e-02
      ⋮  

(510, 0 ,.,.) = 
 -1.0177e-02 -1.0701e-02 -2.0428e-02
 -1.7986e-02  5.9928e-03 -1.0584e-03
 -1.8794e-02 -1.8773e-03 -6.9449e-03

(510, 1 ,.,.) = 
 -2.8498e-03  1.6427e-03  1.4575e-04
 -5.4403e-03  8.3667e-03 -9.4164e-03
 -4.4999e-03  5.4902e-03  2.4863e-03

(510, 2 ,.,.) = 
 -1.3356e-02 -2.1525e-02  5.3421e-04
 -1.9160e-02 -2.4645e-02 -1.3791e-02
 -6.1991e-03 -1.3174e-02 -3.6783e-03
    ... 

(510,253,.,.) = 
 -3.3993e-03 -2.7823e-03  7.6715e-03
 -2.0649e-02 -1.2731e-02 -9.4138e-03
 -1.3678e-03 -3.4410e-02 -2.6984e-02

(510,254,.,.) = 
 -3.5651e-04  2.0102e-03  1.4130e-02
 -1.3073e-02 -1.6616e-02 -1.2690e-02
 -3.5934e-02 -4.1700e-02 -3.3968e-02

(510,255,.,.) = 
  2.0470e-02  8.0159e-04 -1.1607e-03
  9.5101e-03  3.0336e-02  2.7362e-02
  1.5588e-02  3.2851e-02  1.3015e-02
      ⋮  

(511, 0 ,.,.) = 
 -1.5574e-02 -3.2971e-02 -3.1939e-02
 -2.2502e-02 -5.7187e-03 -5.6729e-03
 -2.7309e-02 -1.6981e-02  1.2832e-04

(511, 1 ,.,.) = 
 -1.1925e-02 -2.9479e-02 -2.0437e-02
 -2.4408e-02 -2.2069e-02 -1.9965e-03
 -2.3279e-02 -5.5140e-03  2.5630e-02

(511, 2 ,.,.) = 
 -1.6100e-02 -8.2417e-03  1.5266e-04
 -2.6195e-03 -8.2754e-03 -2.9435e-02
 -2.7493e-03 -2.4889e-02 -2.3583e-02
    ... 

(511,253,.,.) = 
  1.7985e-02  1.8594e-02  8.9198e-04
 -1.7319e-02  7.8735e-03 -2.8659e-03
  3.8596e-03  2.9061e-02  2.4188e-02

(511,254,.,.) = 
 -2.6735e-02 -1.4391e-02 -4.0148e-02
 -2.6728e-02 -2.4455e-02 -6.9176e-03
 -5.7244e-02 -2.1995e-04  5.5438e-02

(511,255,.,.) = 
  2.3487e-02  2.7157e-03 -8.4719e-04
  1.7886e-02  5.4860e-03  2.8059e-02
  4.6468e-03  1.8598e-02  1.3761e-03
[torch.FloatTensor of size 512x256x3x3]
), (u'layer4.0.bn1.running_mean', 
-0.1124
-0.1164
-0.1293
-0.4187
-0.3841
-0.4075
-0.5318
-0.1824
-0.7574
-0.8394
-0.1911
-0.2697
-0.4389
-0.2669
-0.4330
-0.4768
-0.4965
-0.4738
-0.1415
-0.4245
-0.3285
-0.5264
-0.8126
-0.4011
-0.3142
-0.4584
-0.1663
-0.4856
-0.3431
-0.5183
-0.4328
-0.6726
-0.4332
-0.4050
-0.1831
-0.4535
-1.0135
-0.0091
-0.4773
-0.3841
-0.5013
-0.7427
-0.4992
-0.5870
-0.3608
-0.4751
-0.6086
-0.3768
-0.6925
-1.2176
-0.5161
-0.4123
-0.3214
-0.1537
-0.3330
-0.3304
-0.4375
-0.5819
-0.4770
-0.5944
-0.2509
 0.2625
 0.1042
-0.3361
-0.4330
-0.4002
-0.3678
-0.3667
-0.2196
-0.6465
-0.5887
-0.3854
-0.3306
-0.3786
-0.2318
-0.0974
-1.0318
-0.8801
-0.3272
-0.4941
-0.6038
-0.4083
-0.1259
-0.1156
-0.1786
-0.5553
-0.7105
-0.2667
-0.1680
-0.0074
-0.2463
-0.3361
 0.1572
-0.6019
-0.4686
-0.3578
-0.5812
-0.2113
-0.3591
-0.5293
-0.7721
-0.5846
-0.1129
-0.4135
-0.4965
-0.6759
-0.4077
-0.4894
-0.3329
-0.3689
-0.0139
-0.1107
-0.3289
 0.0494
-0.1049
 0.0325
-0.2145
-0.0585
-0.3660
-0.2958
-0.0878
-0.6473
-0.8958
-0.5207
-0.4756
-0.3351
-0.5421
 0.0924
-0.9209
 0.0610
 0.0737
-0.3680
-0.7011
-0.5918
-0.5081
-0.4591
-0.5154
-0.3190
-0.6232
-0.5512
-0.4814
-0.4307
-0.2918
-0.2123
-0.2189
-0.4028
-0.1570
-0.1099
-0.3914
-0.3886
-0.1502
-0.4527
-0.1671
-0.2021
-0.5321
-0.2644
-0.5207
-0.5534
-0.5519
-0.3069
-0.2326
-0.5709
-0.6164
-0.0115
-0.6641
-0.5729
-0.2750
-0.5720
-0.7684
-0.4361
-0.3526
-0.0426
-0.1350
-0.8835
-0.3217
-0.1706
-0.4284
-0.4497
-0.7264
-0.9589
-0.3439
-0.6800
-0.4520
-0.5459
-0.2993
-0.4854
-0.1415
-0.0290
-0.2729
-0.1666
-0.2346
-0.5397
-0.4724
-0.5606
-0.5647
-0.3614
-0.5158
-0.2728
-0.0432
-0.9420
-0.5284
-0.6236
-0.3835
-0.6825
-0.5347
-0.4121
-0.2656
-0.5761
-0.3379
-0.7679
-0.8335
-0.5631
-0.3712
-0.0170
-0.5099
-0.5196
-0.2617
-0.5632
-0.6310
-0.5244
-0.2192
-0.4241
-0.2130
-0.2760
-0.1772
-0.5719
-0.4033
-0.7874
-0.3226
-0.2671
-0.3425
-0.7110
-0.4422
-0.1318
-0.3841
-0.4050
-0.5102
-0.4865
-0.5415
-0.4790
-0.4867
-0.2482
-0.5347
 0.1373
-0.9281
-0.3791
-0.0393
-0.6500
-0.0687
-0.2550
-0.7833
-0.1906
 0.0692
-0.5203
 0.1102
-0.4691
-0.2165
-0.4058
-0.5252
-0.5489
-0.2243
-0.8912
-0.5753
-0.3787
-0.4660
-0.4167
-0.7948
-0.2214
 0.2169
-0.3230
-0.5716
-0.4523
-0.2235
-0.5354
-0.6187
-0.6403
-0.5779
-0.6974
-0.4531
-0.4559
-0.6742
-0.8658
-0.6413
-0.3098
 0.4122
-0.4813
-0.5268
 0.1341
-0.1123
-0.3868
-0.6683
-0.4020
-0.4705
-0.5263
-0.4912
-0.4345
 0.0675
-0.7317
-0.3467
-0.4757
-0.4845
-0.1666
-0.5546
-0.2875
-0.5574
-0.2929
-0.9178
 0.0932
-0.3473
-0.2659
-0.8700
-0.4143
-0.6691
-0.3896
-0.3993
-0.3583
-0.9644
-0.5416
-0.3117
 0.1785
-0.4971
-0.8436
-0.6282
-0.5113
-0.0999
-0.3834
-0.4330
-0.4084
-0.4269
-0.5670
-0.5599
 0.2002
-0.3582
-0.7621
-0.4257
-0.4749
-0.2672
-0.4449
-0.4631
-0.5055
-0.3216
-0.5426
-0.2615
-0.5695
-0.2981
-0.8440
-0.6237
-0.6642
-0.4691
-0.9326
-0.6129
 0.0988
-0.8381
-0.2735
-0.2299
-0.5881
-0.2101
-0.0520
-0.8218
-0.8467
-0.1617
-0.2244
-0.4366
-0.1205
-0.5751
-0.6796
-0.4050
-0.0679
-0.8405
-0.4547
-0.1708
-0.0480
-0.1587
-0.3734
-0.8896
 0.0825
-0.7593
-0.4594
-0.2676
-0.1145
-0.3023
-0.2456
-0.3645
-0.3545
-0.8241
-0.1730
-0.2575
-0.0103
-0.3935
-0.7034
-0.2919
-0.2793
-0.3966
-0.7128
-0.5211
-0.7188
-0.4073
-0.2814
-0.2293
-0.4529
-0.6779
-0.0934
-0.3272
-0.3638
-0.2048
-0.2720
-0.3683
-0.3334
-0.6409
-0.2807
-0.4246
-0.0683
-0.3437
-0.1466
-0.6256
-0.4319
-0.1858
-0.1817
-0.7679
-0.3353
-0.9588
-0.1952
-0.2006
-0.1280
-0.4047
-0.2239
-0.6247
-0.3422
-0.5595
-0.7026
 0.0354
-0.5814
-0.7382
-0.3904
-0.3409
-0.8630
-0.3453
-0.1569
-0.6717
-0.5216
-0.2329
-0.3564
-0.7584
-0.0124
-0.5398
-0.7708
-0.3359
-0.2909
-0.3133
-0.3400
-0.5624
-0.5493
-0.4637
-0.4022
-0.3580
-0.3325
-0.3384
-0.2277
-0.2697
-0.2907
-0.2164
-0.2489
-0.0573
-0.3735
-0.3996
-0.3451
-0.4648
-0.7143
-0.2062
-0.2513
-0.4464
-0.2624
-0.1615
-0.3099
-0.7480
-0.7751
-0.3383
-0.2875
-0.5976
-0.3752
-0.9447
 0.9778
-0.5259
-0.0119
-0.3122
-0.3802
-0.7690
-0.3534
-0.3268
-0.3882
-0.4871
-0.4404
-0.6773
-0.4915
-0.4891
-0.3313
-0.6497
-0.5303
-0.6193
-0.8063
-0.4356
-0.0466
-0.6772
-0.7360
-0.6388
-0.4199
-0.4575
-0.5776
-0.5648
-0.2510
-0.2753
-0.4860
[torch.FloatTensor of size 512]
), (u'layer4.0.bn1.running_var', 
 0.1030
 0.0999
 0.1279
 0.0991
 0.1004
 0.1214
 0.1621
 0.1000
 0.1600
 0.1227
 0.1053
 0.1421
 0.1020
 0.1322
 0.1003
 0.1064
 0.1366
 0.1246
 0.1300
 0.1984
 0.1163
 0.1496
 0.1630
 0.1266
 0.1066
 0.1212
 0.1068
 0.1123
 0.1615
 0.1656
 0.1303
 0.1438
 0.1148
 0.1237
 0.1166
 0.1157
 0.1930
 0.1042
 0.0904
 0.0956
 0.1063
 0.0841
 0.1163
 0.1349
 0.1176
 0.1648
 0.1115
 0.1222
 0.1269
 0.1880
 0.1090
 0.1280
 0.1211
 0.1447
 0.0857
 0.1207
 0.1129
 0.1204
 0.1305
 0.1179
 0.1167
 0.2456
 0.2022
 0.0975
 0.1263
 0.1045
 0.2082
 0.0831
 0.1038
 0.1231
 0.1124
 0.1105
 0.1467
 0.1336
 0.1288
 0.1107
 0.1366
 0.1815
 0.1282
 0.1306
 0.1200
 0.1056
 0.1189
 0.1204
 0.1113
 0.0986
 0.1033
 0.1220
 0.1178
 0.1497
 0.1115
 0.1130
 0.1207
 0.1372
 0.0990
 0.1461
 0.0985
 0.1184
 0.1507
 0.1284
 0.1085
 0.1406
 0.1754
 0.1095
 0.0977
 0.0941
 0.1799
 0.1073
 0.0796
 0.1153
 0.1189
 0.1452
 0.1099
 0.1361
 0.2592
 0.0810
 0.1098
 0.1573
 0.1272
 0.1837
 0.1360
 0.0959
 0.1403
 0.1303
 0.1342
 0.0965
 0.1285
 0.2215
 0.1247
 0.1188
 0.1204
 0.1163
 0.1006
 0.1711
 0.1036
 0.1211
 0.1361
 0.1193
 0.0970
 0.1104
 0.1331
 0.1250
 0.1168
 0.0885
 0.1163
 0.0893
 0.1681
 0.0934
 0.1244
 0.1188
 0.1640
 0.1081
 0.1310
 0.1239
 0.1269
 0.0972
 0.1211
 0.1043
 0.2294
 0.1208
 0.1018
 0.1148
 0.1472
 0.0975
 0.1309
 0.1317
 0.1914
 0.1081
 0.1491
 0.1132
 0.0993
 0.1167
 0.1473
 0.1204
 0.1012
 0.1201
 0.1062
 0.1190
 0.1336
 0.1204
 0.1411
 0.1816
 0.1134
 0.1114
 0.1735
 0.1775
 0.1215
 0.1389
 0.0983
 0.1396
 0.1208
 0.1063
 0.1136
 0.1248
 0.2639
 0.1485
 0.1077
 0.1061
 0.1551
 0.1727
 0.1251
 0.1360
 0.1216
 0.1526
 0.1103
 0.1045
 0.0857
 0.1100
 0.1190
 0.1255
 0.1585
 0.1270
 0.1328
 0.1256
 0.1079
 0.1283
 0.0715
 0.1163
 0.1375
 0.0821
 0.1461
 0.1210
 0.1227
 0.1141
 0.1072
 0.1492
 0.1203
 0.2086
 0.1131
 0.0747
 0.1385
 0.1496
 0.1287
 0.0992
 0.1335
 0.1515
 0.1861
 0.1131
 0.1649
 0.0937
 0.1362
 0.0959
 0.0870
 0.1182
 0.1449
 0.1577
 0.1250
 0.1298
 0.1252
 0.1016
 0.1787
 0.1136
 0.1204
 0.1126
 0.1295
 0.1371
 0.1136
 0.1469
 0.1608
 0.0994
 0.2343
 0.1397
 0.1145
 0.1336
 0.1430
 0.1121
 0.1389
 0.1633
 0.1050
 0.1538
 0.1095
 0.1131
 0.1005
 0.1411
 0.1132
 0.1021
 0.1399
 0.1045
 0.1220
 0.1303
 0.1541
 0.1425
 0.1217
 0.0941
 0.2309
 0.0997
 0.0928
 0.1263
 0.1255
 0.0886
 0.1247
 0.1293
 0.1076
 0.1414
 0.0935
 0.1377
 0.1662
 0.1451
 0.1051
 0.1116
 0.1321
 0.1895
 0.1370
 0.1350
 0.1285
 0.0951
 0.1843
 0.2134
 0.1534
 0.1752
 0.1721
 0.0990
 0.1510
 0.1052
 0.1361
 0.1463
 0.1610
 0.1596
 0.1157
 0.0883
 0.1122
 0.1188
 0.1181
 0.1356
 0.1305
 0.1074
 0.1093
 0.1180
 0.0961
 0.2218
 0.1376
 0.1151
 0.1370
 0.1296
 0.1005
 0.0916
 0.1126
 0.0927
 0.1432
 0.0977
 0.1235
 0.1426
 0.1382
 0.1386
 0.1177
 0.1315
 0.1288
 0.1192
 0.1377
 0.1368
 0.1468
 0.1088
 0.1311
 0.1216
 0.1078
 0.1238
 0.1370
 0.1052
 0.1886
 0.1694
 0.1326
 0.1314
 0.1080
 0.1096
 0.1218
 0.1724
 0.1309
 0.0959
 0.1403
 0.1235
 0.0953
 0.1568
 0.1517
 0.1197
 0.2459
 0.1258
 0.0967
 0.0933
 0.0624
 0.1311
 0.0904
 0.1298
 0.1141
 0.1106
 0.1079
 0.1113
 0.1231
 0.1412
 0.1160
 0.1561
 0.2678
 0.1610
 0.1171
 0.1981
 0.1232
 0.1209
 0.1024
 0.1028
 0.1370
 0.0792
 0.1250
 0.1407
 0.1429
 0.1258
 0.1135
 0.1144
 0.1183
 0.1113
 0.1903
 0.1068
 0.1368
 0.1185
 0.1132
 0.1182
 0.1056
 0.0920
 0.1041
 0.1524
 0.1525
 0.1355
 0.2332
 0.1436
 0.1497
 0.1969
 0.1629
 0.1681
 0.1129
 0.1383
 0.1483
 0.1190
 0.1353
 0.1182
 0.1201
 0.1007
 0.1146
 0.1776
 0.1119
 0.1096
 0.1113
 0.1581
 0.0983
 0.1244
 0.1458
 0.1137
 0.1371
 0.1809
 0.2130
 0.1372
 0.0939
 0.1047
 0.1311
 0.1918
 0.1234
 0.0939
 0.1210
 0.1386
 0.0903
 0.1178
 0.1601
 0.1571
 0.1462
 0.1532
 0.2961
 0.0971
 0.1383
 0.1163
 0.0939
 0.1179
 0.1066
 0.1472
 0.1305
 0.1430
 0.1198
 0.1306
 0.1825
 0.1339
 0.1046
 0.0709
 0.1584
 0.1002
 0.1495
 0.1604
 0.1422
 0.1146
 0.0903
 0.0900
 0.1229
 0.1567
 0.1262
 0.1163
 0.1507
 0.1026
 0.1223
 0.1404
 0.1365
 0.1182
 0.0923
 0.1189
 0.1092
 0.1069
 0.1234
 0.2338
 0.1229
 0.1110
 0.0989
 0.1133
 0.0932
 0.1583
 0.1236
 0.1395
 0.1109
 0.1057
[torch.FloatTensor of size 512]
), (u'layer4.0.bn1.weight', Parameter containing:
 0.2427
 0.2232
 0.2511
 0.2288
 0.2074
 0.2905
 0.2482
 0.3102
 0.2749
 0.2892
 0.2448
 0.1759
 0.2426
 0.2780
 0.2315
 0.2631
 0.3383
 0.2785
 0.2536
 0.2989
 0.2335
 0.2812
 0.3486
 0.2778
 0.2280
 0.2547
 0.3032
 0.2468
 0.2512
 0.2973
 0.2577
 0.3200
 0.2385
 0.2714
 0.2532
 0.2625
 0.3344
 0.2626
 0.1838
 0.2839
 0.2187
 0.2666
 0.2858
 0.2471
 0.2915
 0.2332
 0.2637
 0.2691
 0.2432
 0.2384
 0.2356
 0.2525
 0.2564
 0.2451
 0.2529
 0.2522
 0.2800
 0.3165
 0.2340
 0.2634
 0.2569
 0.1942
 0.2621
 0.2205
 0.2301
 0.2323
 0.2811
 0.1897
 0.2280
 0.3472
 0.2717
 0.3191
 0.2440
 0.2719
 0.2781
 0.2262
 0.3444
 0.2648
 0.2725
 0.2851
 0.2039
 0.2935
 0.2742
 0.2774
 0.2654
 0.2430
 0.2721
 0.2708
 0.3085
 0.2895
 0.2596
 0.2147
 0.3119
 0.3449
 0.2262
 0.2814
 0.2326
 0.2712
 0.2637
 0.2323
 0.3333
 0.2714
 0.2991
 0.2747
 0.2515
 0.2394
 0.2709
 0.2836
 0.2866
 0.2408
 0.2560
 0.2048
 0.2394
 0.2813
 0.3267
 0.2761
 0.2123
 0.2715
 0.2540
 0.2771
 0.3209
 0.1905
 0.3989
 0.2676
 0.2357
 0.2169
 0.3216
 0.3596
 0.2838
 0.2648
 0.2702
 0.2469
 0.2442
 0.2553
 0.2599
 0.2693
 0.2399
 0.2700
 0.2063
 0.2711
 0.2834
 0.2781
 0.2529
 0.2013
 0.2343
 0.2082
 0.3063
 0.1635
 0.2673
 0.2197
 0.2787
 0.2724
 0.2744
 0.2287
 0.2969
 0.2662
 0.2982
 0.2396
 0.3039
 0.2319
 0.2773
 0.2661
 0.2898
 0.2489
 0.3060
 0.2612
 0.2937
 0.3045
 0.2999
 0.2580
 0.2093
 0.2714
 0.2993
 0.2679
 0.2963
 0.2754
 0.2580
 0.2566
 0.2634
 0.2325
 0.2442
 0.2934
 0.2398
 0.2631
 0.2851
 0.2870
 0.2239
 0.2410
 0.2676
 0.2681
 0.2638
 0.2732
 0.2812
 0.2203
 0.2670
 0.2764
 0.2550
 0.3160
 0.2888
 0.2615
 0.2178
 0.2485
 0.2414
 0.2798
 0.2872
 0.2767
 0.2551
 0.2429
 0.2459
 0.3288
 0.3024
 0.2912
 0.2625
 0.3019
 0.2643
 0.2721
 0.2108
 0.2368
 0.2269
 0.1988
 0.2830
 0.2569
 0.2349
 0.2755
 0.2442
 0.2717
 0.2747
 0.2785
 0.2516
 0.2227
 0.2783
 0.2465
 0.2652
 0.2641
 0.2960
 0.2671
 0.2679
 0.2537
 0.2847
 0.2507
 0.2525
 0.2024
 0.2311
 0.2618
 0.2764
 0.3031
 0.2452
 0.2716
 0.2273
 0.2295
 0.2611
 0.2329
 0.2690
 0.2753
 0.2737
 0.2590
 0.2421
 0.2685
 0.3392
 0.3073
 0.1371
 0.3650
 0.2980
 0.2460
 0.2487
 0.2912
 0.2704
 0.2560
 0.2213
 0.2569
 0.2661
 0.2367
 0.2742
 0.2847
 0.3055
 0.2671
 0.2819
 0.2791
 0.2401
 0.2549
 0.2210
 0.3507
 0.2852
 0.2162
 0.2821
 0.2369
 0.2905
 0.2826
 0.2300
 0.2745
 0.2437
 0.2522
 0.2489
 0.2395
 0.2851
 0.2887
 0.2621
 0.2500
 0.2689
 0.2427
 0.3010
 0.3067
 0.2861
 0.2387
 0.2462
 0.2859
 0.2550
 0.2630
 0.2442
 0.2145
 0.2898
 0.2282
 0.2327
 0.2242
 0.2738
 0.2485
 0.2379
 0.3058
 0.2798
 0.2761
 0.2252
 0.2866
 0.2660
 0.3250
 0.2612
 0.2767
 0.3205
 0.2932
 0.3183
 0.2939
 0.3103
 0.2553
 0.2981
 0.3667
 0.3086
 0.2254
 0.2352
 0.2348
 0.2555
 0.2597
 0.2369
 0.3017
 0.2776
 0.2728
 0.3174
 0.2785
 0.2721
 0.2637
 0.2702
 0.3633
 0.2869
 0.2675
 0.3405
 0.2587
 0.2732
 0.2747
 0.2821
 0.2750
 0.2630
 0.2018
 0.2358
 0.3034
 0.3155
 0.3013
 0.2775
 0.2511
 0.2945
 0.1605
 0.2825
 0.2964
 0.2194
 0.2061
 0.2332
 0.2348
 0.2663
 0.2543
 0.2927
 0.2215
 0.2521
 0.2827
 0.1993
 0.2453
 0.2597
 0.2654
 0.2757
 0.2650
 0.2444
 0.2949
 0.2308
 0.3071
 0.1904
 0.3024
 0.2786
 0.3659
 0.2966
 0.2746
 0.2449
 0.2201
 0.2564
 0.2853
 0.2392
 0.2457
 0.2467
 0.2374
 0.2664
 0.2460
 0.3182
 0.1793
 0.2379
 0.2596
 0.2847
 0.2452
 0.1974
 0.2388
 0.2949
 0.2879
 0.2786
 0.2765
 0.3296
 0.2530
 0.2690
 0.2547
 0.2333
 0.2348
 0.2690
 0.2718
 0.2679
 0.2516
 0.2710
 0.2366
 0.2601
 0.2764
 0.2880
 0.2008
 0.2637
 0.2263
 0.2511
 0.2604
 0.2805
 0.2989
 0.2965
 0.2597
 0.2767
 0.2553
 0.2959
 0.2512
 0.2925
 0.3008
 0.2423
 0.2394
 0.2708
 0.3704
 0.2879
 0.2532
 0.2248
 0.2023
 0.2279
 0.2366
 0.3082
 0.2980
 0.2909
 0.2777
 0.4293
 0.2658
 0.2940
 0.2418
 0.2816
 0.3247
 0.2647
 0.2216
 0.2758
 0.2421
 0.2078
 0.2332
 0.2271
 0.2611
 0.3650
 0.2017
 0.2598
 0.2160
 0.2641
 0.1408
 0.2664
 0.2502
 0.2553
 0.2227
 0.2417
 0.2696
 0.2388
 0.2833
 0.2333
 0.2667
 0.2224
 0.2691
 0.2710
 0.2459
 0.2674
 0.2430
 0.2593
 0.1851
 0.2950
 0.3664
 0.2212
 0.3026
 0.1840
 0.3443
 0.2140
 0.3717
 0.2360
 0.3081
 0.2638
 0.2233
[torch.FloatTensor of size 512]
), (u'layer4.0.bn1.bias', Parameter containing:
-0.1986
-0.1593
-0.2054
-0.1598
-0.1268
-0.3226
-0.1597
-0.3477
-0.2497
-0.2730
-0.2319
-0.0286
-0.1899
-0.2813
-0.1733
-0.2412
-0.3712
-0.2747
-0.2053
-0.2585
-0.1535
-0.2748
-0.3241
-0.2525
-0.1906
-0.2252
-0.3436
-0.2202
-0.1664
-0.2716
-0.1920
-0.3399
-0.2026
-0.2972
-0.2616
-0.2238
-0.2486
-0.2606
-0.0893
-0.3572
-0.1283
-0.2583
-0.2450
-0.1523
-0.3165
-0.1445
-0.2522
-0.1963
-0.1794
-0.1071
-0.1662
-0.2053
-0.2530
-0.1447
-0.2517
-0.2062
-0.2817
-0.3376
-0.1382
-0.2389
-0.2557
-0.0156
-0.2169
-0.1763
-0.1486
-0.2122
-0.2002
-0.0716
-0.2089
-0.3580
-0.2588
-0.3599
-0.1528
-0.2107
-0.2925
-0.1855
-0.3970
-0.1257
-0.2574
-0.2412
-0.0863
-0.3065
-0.2701
-0.3380
-0.2485
-0.1935
-0.2987
-0.2279
-0.3600
-0.2764
-0.2480
-0.1208
-0.3378
-0.2661
-0.1677
-0.2470
-0.2152
-0.2591
-0.1936
-0.1543
-0.4117
-0.1570
-0.2372
-0.2997
-0.2124
-0.2034
-0.1848
-0.3070
-0.3438
-0.1839
-0.1937
-0.0916
-0.2338
-0.3558
-0.1967
-0.3303
-0.1398
-0.2177
-0.1665
-0.1857
-0.3115
-0.1049
-0.4229
-0.2408
-0.1320
-0.1631
-0.3378
-0.3300
-0.3183
-0.2268
-0.2787
-0.1950
-0.1950
-0.1463
-0.2437
-0.2297
-0.1282
-0.2164
-0.1179
-0.2437
-0.2611
-0.2656
-0.1948
-0.1208
-0.1668
-0.1351
-0.2713
-0.0560
-0.2243
-0.1318
-0.2356
-0.2720
-0.2051
-0.1736
-0.2891
-0.2627
-0.3358
-0.1779
-0.2309
-0.1477
-0.2685
-0.1882
-0.2629
-0.1983
-0.3522
-0.1905
-0.2778
-0.3395
-0.2895
-0.2240
-0.1150
-0.2462
-0.2426
-0.2581
-0.3133
-0.2315
-0.2271
-0.2077
-0.2109
-0.1371
-0.1323
-0.2529
-0.1716
-0.2532
-0.2277
-0.2084
-0.1803
-0.1868
-0.2404
-0.2166
-0.2197
-0.2870
-0.3062
-0.1507
-0.1054
-0.2199
-0.2415
-0.3310
-0.2700
-0.1568
-0.1449
-0.2610
-0.1828
-0.2648
-0.3134
-0.2937
-0.2687
-0.2115
-0.2164
-0.4522
-0.2999
-0.3032
-0.2292
-0.3099
-0.2642
-0.2695
-0.1441
-0.1671
-0.1570
-0.1415
-0.2222
-0.1736
-0.1481
-0.2573
-0.2060
-0.1703
-0.2360
-0.1770
-0.2132
-0.2016
-0.3001
-0.1518
-0.2086
-0.2805
-0.2698
-0.2292
-0.1293
-0.2514
-0.2600
-0.2454
-0.1744
-0.1029
-0.1679
-0.2353
-0.2007
-0.3363
-0.1640
-0.2430
-0.1699
-0.1697
-0.1837
-0.1625
-0.2415
-0.2687
-0.2305
-0.2029
-0.2209
-0.2240
-0.2675
-0.3233
 0.1462
-0.4777
-0.2376
-0.1489
-0.1462
-0.3055
-0.2234
-0.1697
-0.1952
-0.2131
-0.2340
-0.2039
-0.3054
-0.2596
-0.3470
-0.2176
-0.2706
-0.2897
-0.1729
-0.2300
-0.1066
-0.3556
-0.2912
-0.1777
-0.2007
-0.1699
-0.3009
-0.3046
-0.1693
-0.2602
-0.2053
-0.1810
-0.1808
-0.1730
-0.3757
-0.1808
-0.1805
-0.1895
-0.2643
-0.2075
-0.2365
-0.1975
-0.3064
-0.1984
-0.1811
-0.3676
-0.1198
-0.1485
-0.1770
-0.0781
-0.2052
-0.1360
-0.1417
-0.1691
-0.2395
-0.1785
-0.1747
-0.2484
-0.2717
-0.3096
-0.1465
-0.2239
-0.2584
-0.3572
-0.2311
-0.2878
-0.3841
-0.3475
-0.3896
-0.1891
-0.2861
-0.2431
-0.2837
-0.4365
-0.3353
-0.1802
-0.1976
-0.1529
-0.1978
-0.2535
-0.1954
-0.2667
-0.2813
-0.2487
-0.3070
-0.2339
-0.2212
-0.1925
-0.2224
-0.4178
-0.3151
-0.2663
-0.3581
-0.1935
-0.2385
-0.2424
-0.1850
-0.2265
-0.1803
-0.0777
-0.1492
-0.3361
-0.4133
-0.3123
-0.2745
-0.1247
-0.3102
 0.0041
-0.1981
-0.3301
-0.2047
-0.1053
-0.1653
-0.1634
-0.1116
-0.2314
-0.3191
-0.1818
-0.2657
-0.2220
-0.1029
-0.1999
-0.2702
-0.2139
-0.2256
-0.2653
-0.1630
-0.3322
-0.1617
-0.3446
 0.0288
-0.2456
-0.3171
-0.3580
-0.2857
-0.2520
-0.2031
-0.1522
-0.2203
-0.3490
-0.1685
-0.1424
-0.1602
-0.1553
-0.3057
-0.2420
-0.3536
-0.0551
-0.0987
-0.2272
-0.2619
-0.2035
-0.0906
-0.1976
-0.3040
-0.2732
-0.3161
-0.2102
-0.3384
-0.1740
-0.1475
-0.1842
-0.1823
-0.1151
-0.2183
-0.2010
-0.2659
-0.2205
-0.2567
-0.1633
-0.2213
-0.2658
-0.2938
-0.1069
-0.2522
-0.1103
-0.2216
-0.2244
-0.2908
-0.2176
-0.3605
-0.2374
-0.2391
-0.2251
-0.2256
-0.1339
-0.1970
-0.2970
-0.2206
-0.2051
-0.2229
-0.3602
-0.2923
-0.2498
-0.1466
-0.0979
-0.1686
-0.2158
-0.2881
-0.3002
-0.2760
-0.2496
-0.3536
-0.2868
-0.3251
-0.1847
-0.3062
-0.3861
-0.2650
-0.1339
-0.1846
-0.1630
-0.0630
-0.1717
-0.1415
-0.1906
-0.4611
-0.1391
-0.1920
-0.1369
-0.1647
-0.0055
-0.2598
-0.2653
-0.2319
-0.1780
-0.1913
-0.2055
-0.1891
-0.2625
-0.1633
-0.2497
-0.1696
-0.1907
-0.2431
-0.1825
-0.2607
-0.1943
-0.2361
-0.0581
-0.2758
-0.2593
-0.1466
-0.3589
-0.0439
-0.3440
-0.1089
-0.4219
-0.1503
-0.2792
-0.3035
-0.1156
[torch.FloatTensor of size 512]
), (u'layer4.0.conv2.weight', Parameter containing:
( 0 , 0 ,.,.) = 
  1.6218e-04 -1.4720e-02 -1.7000e-02
 -1.2850e-02 -3.3085e-02 -3.6656e-02
  2.7812e-02  1.7691e-02 -1.8369e-02

( 0 , 1 ,.,.) = 
  1.0528e-02  3.1379e-02  2.4801e-02
 -1.2698e-02 -2.9453e-02 -1.1834e-02
 -9.4094e-03 -8.9462e-03 -3.1349e-02

( 0 , 2 ,.,.) = 
 -7.8447e-03 -2.9256e-02  5.3590e-03
 -1.3791e-02 -1.1116e-02  5.0388e-03
 -2.4919e-03  7.3514e-03  5.4013e-03
    ... 

( 0 ,509,.,.) = 
 -1.0276e-03 -1.0275e-02 -2.9986e-02
 -3.8465e-03  1.9549e-03 -1.6291e-02
 -1.8100e-03  8.3778e-03 -8.5481e-03

( 0 ,510,.,.) = 
 -1.8196e-02 -1.3533e-02 -1.7457e-02
  2.2457e-02  5.7402e-02  1.9325e-02
 -2.4977e-02 -3.2113e-02 -8.1780e-03

( 0 ,511,.,.) = 
  3.6550e-03  4.9358e-03 -5.7597e-03
 -1.6875e-02  1.3999e-04  3.7629e-04
 -2.6272e-03  1.0947e-03  1.1145e-03
      ⋮  

( 1 , 0 ,.,.) = 
  1.4018e-02  3.9198e-03 -1.7189e-03
 -1.3175e-03  4.3503e-04 -1.1798e-02
 -9.8003e-03 -1.7693e-02 -1.9910e-02

( 1 , 1 ,.,.) = 
 -1.4957e-02 -1.9796e-02 -2.8724e-02
  5.8908e-03 -1.5228e-02 -5.6715e-03
  2.9284e-03 -1.8028e-02 -7.1433e-03

( 1 , 2 ,.,.) = 
 -1.1625e-02 -3.3804e-02 -1.0025e-02
 -1.6606e-02 -5.5716e-02 -2.3204e-02
 -2.5758e-02 -4.3135e-02 -2.5901e-02
    ... 

( 1 ,509,.,.) = 
 -1.5007e-02 -1.4333e-02 -2.5937e-03
 -2.3078e-02 -1.5820e-02 -2.2818e-03
 -4.1318e-03 -8.0353e-03 -2.3236e-03

( 1 ,510,.,.) = 
 -1.8531e-02 -1.8004e-02 -2.8084e-02
 -3.6680e-02 -6.8641e-02 -5.2469e-02
 -1.1712e-02 -2.4334e-02 -1.6733e-02

( 1 ,511,.,.) = 
 -2.2078e-02 -2.9163e-02 -3.8717e-03
 -7.0301e-03  1.6718e-02  5.4339e-03
 -1.3131e-02  1.1999e-02 -1.7480e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -5.2378e-03 -3.4890e-03 -2.0851e-03
  1.5306e-02 -2.1752e-02 -8.7682e-03
  2.2460e-02  9.9175e-03 -3.3635e-03

( 2 , 1 ,.,.) = 
  7.4677e-03 -9.1762e-03 -9.2569e-05
  1.9441e-04  1.2344e-03 -8.9978e-03
 -5.1243e-04  2.1850e-04 -4.8828e-03

( 2 , 2 ,.,.) = 
  1.7078e-02  3.3955e-03  9.3503e-03
  2.0334e-02 -1.0621e-04 -8.2017e-05
  1.0706e-02 -1.8414e-03  1.0828e-02
    ... 

( 2 ,509,.,.) = 
  3.2008e-02  2.3494e-02  2.5386e-02
  1.9307e-02  2.3924e-02  2.8972e-02
  9.9003e-03  2.0158e-02  2.2655e-02

( 2 ,510,.,.) = 
 -9.8395e-03 -1.1114e-02 -3.7696e-03
 -2.9508e-02 -3.6956e-02 -1.8228e-02
 -1.3663e-03 -2.5845e-03  1.0352e-02

( 2 ,511,.,.) = 
 -7.3867e-03 -2.5413e-02 -2.1942e-02
 -1.6699e-02 -1.5133e-02 -1.3030e-02
 -2.0090e-02  3.7970e-03 -1.0341e-02
...     
      ⋮  

(509, 0 ,.,.) = 
 -1.6157e-02 -1.6883e-02 -2.8328e-04
 -7.7759e-03 -2.4465e-03 -1.4641e-02
  2.4639e-02  3.9862e-02  2.1048e-02

(509, 1 ,.,.) = 
  2.4491e-03 -9.3885e-03 -1.1786e-02
  2.5301e-02  2.5625e-04  7.1335e-03
  2.2342e-02  1.9042e-02  7.2526e-03

(509, 2 ,.,.) = 
 -1.4652e-02 -2.7802e-02 -4.3564e-03
 -1.7961e-02 -4.3846e-02  2.7409e-03
 -4.7968e-03 -8.4231e-03  1.2070e-02
    ... 

(509,509,.,.) = 
 -2.0171e-02 -3.3546e-02 -1.6728e-02
 -1.7847e-02 -5.1713e-02 -2.6780e-02
 -1.3145e-03 -4.3181e-03 -9.6373e-03

(509,510,.,.) = 
 -5.3917e-03 -2.0410e-04  2.7798e-03
 -9.6882e-04 -2.5141e-02  1.4804e-02
  2.8748e-02  9.0832e-03  4.2548e-02

(509,511,.,.) = 
 -1.5698e-02 -1.9303e-02 -9.1469e-03
 -2.0025e-02 -1.1131e-02 -3.3902e-02
 -5.7436e-03 -7.3640e-03 -1.0044e-02
      ⋮  

(510, 0 ,.,.) = 
 -8.8612e-03 -4.5370e-03 -1.2354e-02
 -5.9245e-03 -1.7058e-02 -2.8041e-02
 -1.0435e-02  7.6695e-04 -1.0578e-02

(510, 1 ,.,.) = 
  9.5200e-03 -5.1975e-03  1.2947e-02
  4.4305e-03 -2.3992e-02 -8.4569e-04
  4.6608e-03  9.6787e-03  8.2174e-03

(510, 2 ,.,.) = 
  5.1559e-03  4.4635e-04 -7.9934e-03
  3.3069e-03  1.4450e-02  8.9234e-03
  6.3402e-03  1.9043e-02  1.9021e-02
    ... 

(510,509,.,.) = 
  7.6964e-03 -1.3777e-02  6.0539e-03
 -1.5745e-03 -2.3391e-02 -1.0052e-02
  9.5183e-03 -1.2251e-02  2.2436e-03

(510,510,.,.) = 
  1.0375e-02  3.5875e-03 -5.7940e-04
  7.0412e-03 -1.0673e-02 -4.9120e-03
 -2.6034e-03  1.1306e-02  7.0696e-03

(510,511,.,.) = 
 -1.7509e-02 -2.3182e-02 -1.7897e-02
 -1.7769e-03  1.9672e-03 -7.3220e-03
 -6.6833e-03  9.8286e-03  2.0653e-03
      ⋮  

(511, 0 ,.,.) = 
  2.8375e-02 -8.1936e-03  1.8009e-02
  1.5829e-02 -1.3571e-02 -1.9335e-02
  4.0766e-03 -1.5722e-02 -5.0620e-02

(511, 1 ,.,.) = 
 -5.5310e-03 -1.8996e-02 -7.9436e-03
  1.3825e-03 -4.9608e-02  1.7256e-03
  7.6629e-03 -7.6101e-03  1.2541e-02

(511, 2 ,.,.) = 
  1.8052e-02  3.1718e-02  4.2556e-03
 -3.6760e-03  3.0490e-03 -1.2264e-02
 -8.9404e-03 -1.6604e-02  1.6348e-03
    ... 

(511,509,.,.) = 
  5.3192e-03  1.8204e-02  1.8114e-02
 -6.1202e-03  1.5905e-03  2.0264e-02
 -1.1471e-02 -1.5697e-02  9.0871e-03

(511,510,.,.) = 
  3.7707e-03  8.0599e-03  1.8290e-02
  1.7257e-02  6.9638e-03  1.8746e-02
  1.0751e-02  1.3663e-02 -1.0081e-03

(511,511,.,.) = 
  1.9711e-02 -1.4569e-02 -2.4663e-02
  2.5966e-03 -2.4807e-02  9.3861e-03
 -1.2876e-03  1.3974e-03  1.3434e-02
[torch.FloatTensor of size 512x512x3x3]
), (u'layer4.0.bn2.running_mean', 
-0.2323
-0.2009
-0.1230
-0.1102
-0.0945
-0.1073
-0.1357
-0.1954
-0.1826
-0.1890
-0.1432
-0.1667
-0.1086
-0.1213
-0.1614
-0.1109
-0.1794
-0.1853
-0.1421
-0.1549
-0.1322
-0.1870
-0.1730
-0.1042
-0.1547
-0.1679
-0.1846
-0.1568
-0.1340
-0.0786
-0.1664
-0.1481
-0.1538
-0.1475
-0.1476
-0.1409
-0.2402
-0.0707
-0.0515
-0.1052
-0.1535
-0.2514
-0.1963
-0.1318
-0.1389
-0.1726
-0.2069
-0.1794
-0.0709
-0.1851
-0.1337
-0.0983
-0.1463
-0.1685
-0.1355
-0.1603
-0.1008
-0.1787
-0.2180
-0.1460
-0.1948
-0.1348
-0.2020
-0.1971
-0.1880
-0.0911
-0.1778
-0.1945
-0.0790
-0.2138
-0.1080
-0.1863
-0.1487
-0.1820
-0.1090
-0.1556
-0.1834
-0.1325
-0.1903
-0.1287
-0.1414
-0.0978
-0.0961
-0.1062
-0.1628
-0.1549
-0.1931
-0.1080
-0.1673
 0.0160
-0.1061
-0.0820
-0.1730
-0.1498
-0.1451
-0.1533
-0.0621
-0.1445
-0.0918
-0.1844
-0.2001
-0.1960
-0.2816
-0.1050
-0.0827
-0.0967
-0.1907
-0.2045
-0.1425
-0.1722
-0.1856
-0.1481
-0.0500
-0.1964
-0.2529
-0.1305
-0.1833
-0.1010
-0.1678
-0.0904
-0.1421
-0.1829
-0.1483
-0.1604
-0.2044
-0.2470
-0.2574
 0.0411
-0.1046
-0.0987
-0.1557
-0.1563
-0.1190
-0.0537
-0.1004
-0.1289
-0.1472
-0.1177
-0.1001
-0.1697
-0.1182
-0.1078
-0.0982
-0.0848
-0.1159
-0.2130
-0.1836
-0.1310
-0.1298
-0.1068
-0.1665
-0.1800
-0.1908
-0.1894
-0.1793
-0.1248
-0.1584
-0.0122
-0.1105
-0.0558
-0.1281
-0.0900
-0.1077
-0.0362
-0.1808
-0.1684
-0.1897
-0.1344
-0.1439
-0.1051
-0.1875
-0.1760
-0.0602
-0.1801
-0.1497
-0.0929
-0.1682
-0.1124
-0.2335
-0.1392
-0.1584
-0.1489
-0.0831
-0.1165
-0.1117
-0.1485
-0.2255
-0.0950
-0.3208
-0.1579
-0.2568
-0.0963
-0.1540
-0.0998
-0.1362
-0.2135
-0.2037
-0.1357
-0.1213
-0.1102
-0.1944
-0.1846
-0.1457
-0.1200
-0.1515
-0.1240
-0.1507
-0.1459
-0.1838
-0.0138
-0.1594
-0.1894
-0.1916
-0.0972
-0.1900
-0.0623
-0.1021
-0.0999
-0.2354
-0.2060
-0.1587
-0.0965
-0.0440
-0.1450
-0.2433
-0.1366
-0.1435
-0.1234
-0.0996
-0.1855
-0.1259
-0.1713
-0.2071
 0.3675
-0.1830
-0.0825
-0.1592
 0.4767
-0.1776
-0.2842
-0.1735
-0.2587
-0.0918
-0.0702
-0.1917
-0.2316
-0.1425
-0.2009
-0.1625
-0.0506
-0.1747
-0.1638
-0.0841
-0.0549
-0.1516
-0.2360
-0.1172
-0.1092
-0.0038
-0.1679
-0.1220
-0.0646
-0.1783
-0.1515
-0.0512
-0.0918
-0.0816
-0.1421
-0.1359
 0.0083
-0.2484
-0.1884
-0.0736
-0.1139
-0.2213
-0.1780
-0.1929
-0.1703
-0.1334
-0.2096
-0.1853
-0.1166
-0.1438
-0.1881
 0.1436
-0.0686
-0.1421
-0.1335
-0.1524
-0.2322
-0.2406
-0.0871
-0.1397
-0.1480
-0.1512
-0.1262
-0.1244
-0.1173
-0.1291
-0.1326
-0.1113
-0.2080
-0.1329
-0.1498
-0.1469
-0.1715
-0.1090
-0.1383
-0.0470
-0.1454
-0.1737
-0.2443
-0.1302
-0.0830
-0.1078
-0.1338
-0.1451
-0.1278
-0.1947
-0.0877
-0.1288
-0.1151
-0.1809
-0.1068
-0.1797
-0.1599
-0.1411
-0.2104
-0.1189
-0.1548
-0.1769
-0.2152
-0.2549
-0.1977
-0.1385
-0.2339
-0.2481
-0.0978
-0.0979
-0.0697
-0.1257
-0.0927
-0.1224
-0.1986
-0.1570
-0.1845
-0.1944
-0.1407
-0.1315
-0.1657
-0.1823
-0.1973
-0.1310
-0.1542
-0.1280
-0.0570
-0.1538
-0.1152
-0.1496
-0.0477
-0.1515
-0.1121
-0.1667
-0.1651
-0.0415
-0.1299
-0.1688
-0.1143
-0.0564
-0.0792
-0.2140
-0.1535
-0.3087
-0.1927
-0.1168
-0.1704
-0.1362
-0.1538
-0.0804
-0.1526
-0.1125
-0.1438
-0.0565
-0.0919
-0.1430
-0.1173
-0.2215
-0.1624
-0.2277
-0.1165
-0.1816
-0.0899
-0.0536
-0.1443
-0.1539
-0.1223
-0.1396
-0.1891
-0.1502
-0.1522
-0.1075
-0.0810
-0.1276
-0.2212
-0.0747
-0.1313
-0.1488
-0.1832
-0.1005
-0.1688
-0.2087
-0.2055
-0.0563
-0.1815
-0.0792
-0.1381
-0.0926
-0.1136
-0.2200
-0.1026
-0.1947
-0.0892
-0.1711
-0.0661
-0.1989
-0.1249
-0.1797
-0.2079
-0.1755
-0.0912
-0.3122
-0.1278
-0.1374
-0.2122
-0.1040
-0.1104
-0.2023
-0.1358
-0.1437
-0.1378
-0.1535
-0.1709
-0.2460
-0.1195
-0.1224
-0.1485
-0.2050
-0.1663
-0.1218
-0.1084
-0.0843
-0.1545
-0.1624
-0.0402
-0.0948
-0.1233
-0.1247
-0.0949
-0.1890
-0.1409
-0.1957
-0.1521
-0.1791
-0.1771
-0.0799
-0.1515
-0.2390
-0.0979
-0.1374
-0.1728
-0.0893
-0.2172
-0.1527
-0.1728
-0.1136
-0.1325
-0.2203
-0.1285
-0.1800
-0.2360
-0.1478
-0.0860
-0.1360
-0.1366
-0.1958
-0.1150
-0.1826
-0.2315
-0.1288
-0.2192
-0.0944
-0.1645
-0.1989
-0.1677
-0.1951
-0.1835
-0.0518
-0.0916
-0.1564
-0.1527
-0.1834
-0.1424
-0.0484
-0.0799
-0.0930
-0.0937
-0.1105
-0.1594
-0.1454
-0.2459
-0.0755
-0.2106
[torch.FloatTensor of size 512]
), (u'layer4.0.bn2.running_var', 
1.00000e-02 *
  2.4833
  3.3080
  2.0296
  1.5249
  2.0692
  1.8305
  2.0471
  2.8226
  3.0079
  2.4272
  2.7239
  2.1119
  1.6120
  4.8926
  1.5775
  1.9033
  2.0561
  3.5445
  2.2633
  1.4559
  2.1948
  2.6594
  2.5071
  1.5912
  1.9282
  2.1082
  1.9509
  1.9900
  1.6651
  1.8938
  2.1580
  2.5958
  2.0472
  2.1154
  1.6775
  1.4313
  2.8038
  2.0398
  2.3671
  1.3760
  1.9427
  2.1632
  2.3166
  1.3648
  2.5834
  2.0891
  1.9066
  3.4593
  2.1960
  2.2518
  2.0690
  1.3641
  1.6057
  1.9966
  2.0539
  1.7946
  1.7566
  1.9128
  2.2047
  2.9701
  1.7670
  1.9960
  2.9041
  2.3745
  2.3840
  2.0386
  2.5736
  1.7321
  1.6626
  1.8936
  3.6740
  2.3555
  1.7346
  2.9061
  1.7480
  2.0982
  1.6436
  1.7391
  2.2283
  1.9045
  1.5922
  2.6576
  1.8965
  2.4633
  2.2448
  2.3271
  2.6828
  1.5013
  3.4970
  2.7197
  2.4104
  2.4977
  1.8593
  1.8319
  2.3605
  2.9364
  2.0061
  2.1858
  2.2766
  2.0778
  3.7099
  2.7477
  2.4862
  1.7150
  1.6191
  1.5232
  3.0046
  2.6621
  1.8450
  2.9335
  1.7999
  2.5333
  1.8225
  2.6072
  2.3344
  1.9952
  2.7224
  3.9102
  1.7148
  1.8970
  2.6572
  2.3887
  2.5440
  1.9029
  1.8488
  1.9150
  2.2768
  2.1362
  1.5905
  2.0834
  2.0401
  2.5575
  2.2002
  1.2720
  1.5156
  1.7273
  2.4564
  2.0573
  1.9230
  1.7903
  2.1950
  1.9275
  1.9678
  2.0337
  2.0774
  2.3042
  2.2799
  1.7380
  2.5705
  2.0541
  3.0618
  2.0408
  1.8540
  2.5696
  1.4412
  2.2202
  1.8074
  3.2491
  2.3889
  1.7946
  1.9074
  2.2918
  1.8890
  2.9527
  2.1006
  2.5455
  2.3745
  2.0723
  2.0327
  2.0734
  2.0228
  1.9176
  1.7930
  2.2085
  1.7270
  2.3272
  2.2734
  1.8007
  3.7277
  2.0109
  2.5690
  2.3128
  2.7003
  2.4481
  2.0348
  2.9298
  1.9656
  2.0298
  3.2104
  1.7097
  2.0729
  1.6681
  2.9341
  1.3314
  2.2363
  1.5633
  1.8116
  3.0468
  2.0086
  2.1300
  2.8081
  1.7087
  3.4536
  2.1716
  2.4298
  1.6968
  2.1991
  1.4881
  1.9965
  1.6619
  2.4966
  2.3971
  1.9127
  2.3055
  2.0037
  2.4586
  2.4219
  1.9185
  2.3733
  2.4952
  2.1067
  1.6952
  2.2617
  1.6901
  2.5003
  1.8883
  1.9898
  2.0216
  2.0317
  2.4188
  1.9648
  1.8298
  1.8622
  6.7734
  1.8365
  1.4915
  2.3664
  8.2619
  2.5052
  4.0331
  1.8407
  3.2252
  3.3313
  1.6555
  2.0685
  2.6944
  1.5494
  1.8364
  1.8372
  3.4329
  3.8219
  1.6332
  1.5061
  1.5214
  2.0056
  3.3673
  2.1137
  2.7841
  1.9850
  2.1473
  2.3712
  2.5655
  2.2647
  1.6206
  1.6700
  2.4116
  1.6932
  2.5522
  1.6277
  2.9663
  3.7830
  1.8506
  1.7631
  2.8417
  2.9806
  2.1214
  2.1561
  2.1888
  2.1089
  2.4743
  2.3409
  1.9061
  1.7674
  2.7206
  3.4606
  1.6863
  1.8932
  2.4011
  2.2686
  1.7131
  2.2803
  1.7171
  1.9732
  1.7178
  1.9143
  1.4510
  3.2377
  2.2500
  1.8290
  2.1394
  3.0828
  2.1373
  2.0031
  2.3608
  2.8301
  1.8092
  2.3573
  1.9300
  1.8900
  1.9180
  2.2582
  3.1516
  2.6300
  1.6959
  2.0105
  1.9393
  4.1140
  1.5049
  3.3769
  5.2802
  2.8814
  1.9997
  2.0849
  2.0606
  2.1785
  1.3761
  2.1078
  1.5782
  1.8571
  2.5762
  3.7403
  3.2722
  2.1694
  1.7374
  1.8202
  1.9531
  5.2114
  1.5209
  1.8567
  2.2269
  2.0769
  6.5523
  1.6649
  3.6942
  2.0398
  1.6697
  2.2643
  2.3169
  2.5668
  4.6674
  1.8211
  2.1373
  2.0317
  1.8884
  1.8498
  1.6197
  2.4375
  1.6976
  1.8281
  1.4417
  2.8025
  2.0342
  2.6802
  1.8525
  2.3066
  1.5621
  2.3369
  2.0752
  2.5609
  1.8787
  3.0633
  2.4343
  9.0075
  2.2312
  2.1592
  1.6924
  2.0200
  1.7122
  2.2771
  1.5618
  2.9398
  1.9049
  2.7112
  1.7003
  1.6870
  2.1307
  1.6659
  1.5115
  2.2211
  2.0252
  1.8544
  1.4517
  1.3800
  2.9232
  1.6665
  1.9171
  1.6493
  1.9881
  2.0807
  2.0759
  1.2931
  2.0713
  1.7423
  3.0200
  2.7102
  2.5999
  1.5614
  1.8196
  2.0943
  2.1923
  2.4057
  1.8049
  1.5076
  2.5803
  1.8316
  1.8238
  1.6072
  1.8363
  2.8800
  1.6225
  2.2379
  1.9086
  2.0058
  1.5964
  3.0622
  1.8056
  2.0481
  2.6230
  2.5718
  2.4484
  4.8848
  2.0584
  1.7286
  2.3303
  2.0452
  2.5861
  2.1619
  1.7750
  1.7517
  2.2799
  3.7831
  1.9328
  3.0274
  1.8237
  1.9539
  1.9688
  2.8542
  2.1648
  1.7796
  1.4165
  2.0635
  1.5512
  2.4537
  1.8025
  1.7956
  2.1426
  2.3666
  2.5232
  1.7208
  1.4933
  2.9103
  2.3218
  1.7705
  2.0426
  1.5930
  2.3843
  2.4137
  1.5038
  2.4345
  1.9328
  2.5741
  1.9144
  2.4423
  1.5700
  2.3361
  1.8594
  1.7644
  2.2995
  1.8335
  3.9936
  1.6851
  3.1330
  1.8009
  2.0876
  2.8069
  2.4640
  1.9396
  1.5216
  1.3678
  2.1538
  1.5096
  1.6284
  1.9524
  1.8641
  2.0955
  2.0575
  1.4833
  1.9324
  1.9538
  1.8318
  1.9908
  2.0339
  2.1765
  2.2689
  2.0712
  2.3893
  1.8392
  1.7216
  1.7257
  2.6570
  1.5864
  1.7469
[torch.FloatTensor of size 512]
), (u'layer4.0.bn2.weight', Parameter containing:
 0.4474
 0.5138
 0.4335
 0.3421
 0.3855
 0.3495
 0.3741
 0.5836
 0.4327
 0.5043
 0.4618
 0.3866
 0.3498
 0.4798
 0.3310
 0.3913
 0.3880
 0.5225
 0.3975
 0.3292
 0.4151
 0.4458
 0.3970
 0.3614
 0.3914
 0.4633
 0.3463
 0.3644
 0.3272
 0.4584
 0.4280
 0.4538
 0.4030
 0.4673
 0.4209
 0.3987
 0.4233
 0.3876
 0.4212
 0.3460
 0.3522
 0.3744
 0.4550
 0.2888
 0.4590
 0.4817
 0.4450
 0.5110
 0.4052
 0.4247
 0.3558
 0.3075
 0.4462
 0.4724
 0.4253
 0.3884
 0.4492
 0.3727
 0.4630
 0.3985
 0.3512
 0.3665
 0.3860
 0.5082
 0.4022
 0.3458
 0.4805
 0.5390
 0.4223
 0.4275
 0.4590
 0.4736
 0.3673
 0.5405
 0.3243
 0.5178
 0.4743
 0.3506
 0.3759
 0.4328
 0.3867
 0.4591
 0.3843
 0.4982
 0.5288
 0.3946
 0.4589
 0.3197
 0.4676
 0.4806
 0.4308
 0.4235
 0.3284
 0.3877
 0.4140
 0.4469
 0.4041
 0.4407
 0.4356
 0.5120
 0.5059
 0.4628
 0.4585
 0.3311
 0.3424
 0.4150
 0.5170
 0.4593
 0.5228
 0.4252
 0.4214
 0.4995
 0.4098
 0.5380
 0.4874
 0.3719
 0.4649
 0.4320
 0.3277
 0.3743
 0.4360
 0.4838
 0.4399
 0.3763
 0.4150
 0.5147
 0.5012
 0.4382
 0.3655
 0.4037
 0.4498
 0.4720
 0.3914
 0.3237
 0.3208
 0.3224
 0.4291
 0.4009
 0.3947
 0.3779
 0.4349
 0.4120
 0.3274
 0.4334
 0.3740
 0.4189
 0.4288
 0.3071
 0.4260
 0.3410
 0.4375
 0.4407
 0.3750
 0.5853
 0.4518
 0.5045
 0.3005
 0.4968
 0.4155
 0.3755
 0.5514
 0.4146
 0.4677
 0.1404
 0.5001
 0.4193
 0.4246
 0.4452
 0.5109
 0.4488
 0.4574
 0.3896
 0.4145
 0.4497
 0.4245
 0.3971
 0.3957
 0.4072
 0.5305
 0.4986
 0.3733
 0.4280
 0.3469
 0.4178
 0.3766
 0.4029
 0.3814
 0.4493
 0.5132
 0.4080
 0.4155
 0.3635
 0.4391
 0.3489
 0.4228
 0.4833
 0.3494
 0.4406
 0.3795
 0.4298
 0.4910
 0.3878
 0.6299
 0.4322
 0.5436
 0.4140
 0.4312
 0.3161
 0.3612
 0.3597
 0.4281
 0.4506
 0.4294
 0.3646
 0.4110
 0.4038
 0.4098
 0.3901
 0.3928
 0.5421
 0.3629
 0.4078
 0.4586
 0.4217
 0.3953
 0.3997
 0.3838
 0.4374
 0.3576
 0.4217
 0.4128
 0.3904
 0.4137
 0.5145
 0.4039
 0.3577
 0.4429
 0.5639
 0.3848
 0.6104
 0.4482
 0.6203
 0.5336
 0.3480
 0.5401
 0.6044
 0.4077
 0.3469
 0.4281
 0.4631
 0.5948
 0.3479
 0.3689
 0.3658
 0.3191
 0.5492
 0.3410
 0.5386
 0.4041
 0.3373
 0.4186
 0.5187
 0.3933
 0.3188
 0.3502
 0.3736
 0.4238
 0.4752
 0.3322
 0.5078
 0.4317
 0.5318
 0.4413
 0.5510
 0.5648
 0.4130
 0.4017
 0.4304
 0.4077
 0.4285
 0.4360
 0.3749
 0.4261
 0.3905
 0.3030
 0.3412
 0.3768
 0.4507
 0.3127
 0.4592
 0.4298
 0.3936
 0.3106
 0.3869
 0.3594
 0.4046
 0.4722
 0.4373
 0.3902
 0.3515
 0.4448
 0.4299
 0.4347
 0.4693
 0.4807
 0.2549
 0.4171
 0.4387
 0.4156
 0.3976
 0.4092
 0.4953
 0.4824
 0.3468
 0.4382
 0.4179
 0.4668
 0.3299
 0.5986
 0.4949
 0.4167
 0.4996
 0.4528
 0.4550
 0.4945
 0.3415
 0.4658
 0.4356
 0.3976
 0.5439
 0.4643
 0.5122
 0.4669
 0.4463
 0.4810
 0.3492
 0.3961
 0.3593
 0.4053
 0.3878
 0.3959
 0.5001
 0.2808
 0.5470
 0.4448
 0.4894
 0.4621
 0.3417
 0.3485
 0.5060
 0.3637
 0.3774
 0.3248
 0.4520
 0.3936
 0.3403
 0.4660
 0.4114
 0.3643
 0.4196
 0.3903
 0.5128
 0.4221
 0.4115
 0.4240
 0.3610
 0.4999
 0.3672
 0.4721
 0.4252
 0.5590
 0.4694
 0.7322
 0.5849
 0.4749
 0.4426
 0.3934
 0.3909
 0.4576
 0.3636
 0.4146
 0.4129
 0.5081
 0.3681
 0.3652
 0.4254
 0.2945
 0.4142
 0.3145
 0.4304
 0.4252
 0.3493
 0.4257
 0.5133
 0.3261
 0.4367
 0.3637
 0.3712
 0.4183
 0.3772
 0.4418
 0.4231
 0.4133
 0.4731
 0.4955
 0.4046
 0.4079
 0.4719
 0.3875
 0.4673
 0.4129
 0.4569
 0.3530
 0.4793
 0.3844
 0.3785
 0.3343
 0.4351
 0.6512
 0.4295
 0.4122
 0.3788
 0.3692
 0.4343
 0.4214
 0.3873
 0.4566
 0.4456
 0.4107
 0.4596
 0.7082
 0.4452
 0.3515
 0.4785
 0.4217
 0.5756
 0.4312
 0.4047
 0.4043
 0.4764
 0.5489
 0.4430
 0.5559
 0.3744
 0.3951
 0.4376
 0.4752
 0.4340
 0.4399
 0.3586
 0.4161
 0.3930
 0.4599
 0.4354
 0.3448
 0.4649
 0.4442
 0.4275
 0.3881
 0.3247
 0.4909
 0.3426
 0.3989
 0.4320
 0.3363
 0.3991
 0.4732
 0.3514
 0.4736
 0.4244
 0.4603
 0.3298
 0.4357
 0.4353
 0.3742
 0.4191
 0.3880
 0.4212
 0.4527
 0.7213
 0.3969
 0.5217
 0.3786
 0.3512
 0.5318
 0.4138
 0.3243
 0.3244
 0.3652
 0.4774
 0.3997
 0.2800
 0.4562
 0.4463
 0.4816
 0.4290
 0.4399
 0.4633
 0.3575
 0.4774
 0.3105
 0.4356
 0.3797
 0.4304
 0.4261
 0.3740
 0.3370
 0.3917
 0.3637
 0.4347
 0.5235
 0.3845
[torch.FloatTensor of size 512]
), (u'layer4.0.bn2.bias', Parameter containing:
-0.1759
-0.2156
-0.2047
-0.1695
-0.1628
-0.1473
-0.2158
-0.2905
-0.1112
-0.2196
-0.1020
-0.1549
-0.1989
-0.0445
-0.1508
-0.1920
-0.2114
-0.1655
-0.1854
-0.1733
-0.1289
-0.2376
-0.1965
-0.1965
-0.1776
-0.1774
-0.1760
-0.1546
-0.1648
-0.2599
-0.1752
-0.2498
-0.1741
-0.2410
-0.2498
-0.2938
-0.1496
-0.1578
-0.1800
-0.1851
-0.1516
-0.1345
-0.2746
-0.1248
-0.2246
-0.2531
-0.2398
-0.1859
-0.1739
-0.2393
-0.1214
-0.1803
-0.2729
-0.2617
-0.1855
-0.2316
-0.2333
-0.1860
-0.2097
-0.0692
-0.1912
-0.2078
-0.1084
-0.2810
-0.1303
-0.1654
-0.2119
-0.3641
-0.2951
-0.2384
-0.1632
-0.1892
-0.1792
-0.2031
-0.1770
-0.2738
-0.3324
-0.1725
-0.1793
-0.2638
-0.2207
-0.1609
-0.1534
-0.1414
-0.2992
-0.1450
-0.1838
-0.1779
-0.1422
-0.2198
-0.1900
-0.1580
-0.1666
-0.2490
-0.1569
-0.1718
-0.1660
-0.1972
-0.2287
-0.2366
-0.2230
-0.1543
-0.2030
-0.1431
-0.1363
-0.2015
-0.1804
-0.2093
-0.2964
-0.1984
-0.2683
-0.2216
-0.2147
-0.3404
-0.2668
-0.1890
-0.1733
-0.2226
-0.1772
-0.1698
-0.1095
-0.2180
-0.1154
-0.1654
-0.1910
-0.3535
-0.3112
-0.2161
-0.1496
-0.1667
-0.2849
-0.2207
-0.1529
-0.1807
-0.2118
-0.1869
-0.1376
-0.1770
-0.1861
-0.1969
-0.1741
-0.3011
-0.0787
-0.2017
-0.1947
-0.2247
-0.2459
-0.1058
-0.1401
-0.1213
-0.1199
-0.1760
-0.2156
-0.3307
-0.3515
-0.2366
-0.1185
-0.2155
-0.1751
-0.1892
-0.3365
-0.1598
-0.2554
 0.0644
-0.2856
-0.1198
-0.1583
-0.2297
-0.3352
-0.1987
-0.2686
-0.1632
-0.2461
-0.2900
-0.2428
-0.1449
-0.1900
-0.2149
-0.1541
-0.2917
-0.2504
-0.2213
-0.0463
-0.1547
-0.1511
-0.1527
-0.1735
-0.1931
-0.1987
-0.2239
-0.2086
-0.2688
-0.1845
-0.1797
-0.1833
-0.3880
-0.1539
-0.1553
-0.1567
-0.2238
-0.1511
-0.2540
-0.2849
-0.1826
-0.2687
-0.2328
-0.2108
-0.2410
-0.1022
-0.1507
-0.1978
-0.1734
-0.2282
-0.0985
-0.1847
-0.1770
-0.1576
-0.1937
-0.1643
-0.2822
-0.1866
-0.2754
-0.2266
-0.2169
-0.1352
-0.2194
-0.1060
-0.2139
-0.1322
-0.1889
-0.2130
-0.1913
-0.2364
-0.1402
-0.2228
-0.2354
-0.1632
-0.1905
-0.1428
-0.1177
-0.2419
-0.2733
-0.2963
-0.1600
-0.3558
-0.3673
-0.2201
-0.1505
-0.2084
-0.0870
-0.2052
-0.2070
-0.1986
-0.2299
-0.0745
-0.1765
-0.1412
-0.2180
-0.1450
-0.1426
-0.1452
-0.2916
-0.0871
-0.1359
-0.2003
-0.1125
-0.2588
-0.1988
-0.2028
-0.2443
-0.0864
-0.3415
-0.2579
-0.2343
-0.3552
-0.1859
-0.1153
-0.1732
-0.1780
-0.1909
-0.2018
-0.1886
-0.2751
-0.1501
 0.1165
-0.1891
-0.1845
-0.2037
-0.0339
-0.3464
-0.1956
-0.1962
-0.1537
-0.1902
-0.1431
-0.3022
-0.1780
-0.1971
-0.2118
-0.0952
-0.1711
-0.2409
-0.2184
-0.2114
-0.2042
-0.0566
-0.0700
-0.2081
-0.1872
-0.2079
-0.1540
-0.2266
-0.1981
-0.1679
-0.2022
-0.2010
-0.1051
-0.1705
-0.2139
 0.0396
-0.1077
-0.2745
-0.2690
-0.2603
-0.2819
-0.1917
-0.1940
-0.2944
-0.1822
-0.2903
-0.1064
-0.2076
-0.2648
-0.3032
-0.2878
-0.1579
-0.0071
-0.2142
-0.2022
-0.1516
-0.1123
 0.0246
-0.0978
-0.1382
-0.1800
-0.3214
-0.2179
-0.1369
-0.0800
 0.0117
-0.1839
-0.1926
-0.1614
-0.2769
-0.1909
-0.2101
-0.2305
-0.2055
-0.2017
-0.2741
-0.1005
-0.3152
-0.1121
-0.1700
-0.1364
-0.2157
-0.2673
-0.1584
-0.1997
-0.1745
-0.1886
-0.2307
-0.2024
-0.3376
-0.2266
-0.2355
-0.2133
-0.2346
-0.2412
-0.2358
-0.1265
-0.2341
-0.1887
-0.1646
-0.1417
-0.1882
-0.1076
-0.3048
-0.1162
-0.1651
-0.2046
-0.1833
-0.3102
-0.1778
-0.1575
-0.2676
-0.1777
-0.1569
-0.1741
-0.1892
-0.3028
-0.1457
-0.2179
-0.2226
-0.1609
-0.1423
-0.2683
-0.2920
-0.1740
-0.2079
-0.1940
-0.2679
-0.1973
-0.1951
-0.1665
-0.2286
-0.1903
-0.2667
-0.4010
-0.2550
-0.1817
-0.2025
-0.1589
-0.2476
-0.0573
-0.2203
-0.2084
-0.1587
-0.1212
-0.1795
-0.3449
-0.1662
-0.2523
-0.2435
-0.2878
-0.2797
-0.1897
-0.2113
-0.1943
-0.2050
-0.1694
-0.2243
-0.2987
-0.1328
-0.1428
-0.2399
-0.1593
-0.1999
-0.3225
-0.1860
-0.1763
-0.2691
-0.2097
-0.2396
-0.1140
-0.1897
-0.1870
-0.1829
-0.2615
-0.2073
-0.1858
-0.0598
-0.1915
-0.2183
-0.2088
-0.1742
-0.2715
-0.1999
-0.2117
-0.2492
-0.1717
-0.1566
-0.1669
-0.3015
-0.1685
-0.2434
-0.2297
-0.1947
-0.2860
-0.3288
-0.2197
-0.1862
-0.1755
-0.0987
-0.1756
-0.1304
-0.1555
-0.1679
-0.2222
-0.2819
-0.2652
-0.0947
-0.2412
-0.2731
-0.2572
-0.2604
-0.2934
-0.2470
-0.1820
-0.2740
-0.1336
-0.1698
-0.1919
-0.1796
-0.2325
-0.1352
-0.1077
-0.2184
-0.1539
-0.2015
-0.3243
-0.1713
[torch.FloatTensor of size 512]
), (u'layer4.0.downsample.0.weight', Parameter containing:
( 0 , 0 ,.,.) = 
  5.6973e-03

( 0 , 1 ,.,.) = 
  2.0359e-03

( 0 , 2 ,.,.) = 
  1.6696e-02
    ... 

( 0 ,253,.,.) = 
  8.4662e-03

( 0 ,254,.,.) = 
 -2.7450e-02

( 0 ,255,.,.) = 
  9.6710e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -2.7123e-02

( 1 , 1 ,.,.) = 
 -1.5713e-02

( 1 , 2 ,.,.) = 
  5.4291e-02
    ... 

( 1 ,253,.,.) = 
 -2.0631e-02

( 1 ,254,.,.) = 
 -3.0793e-02

( 1 ,255,.,.) = 
  1.3228e-03
      ⋮  

( 2 , 0 ,.,.) = 
 -5.2315e-02

( 2 , 1 ,.,.) = 
 -3.5294e-02

( 2 , 2 ,.,.) = 
  3.9423e-02
    ... 

( 2 ,253,.,.) = 
 -3.8161e-02

( 2 ,254,.,.) = 
 -2.6385e-02

( 2 ,255,.,.) = 
 -4.4272e-02
...     
      ⋮  

(509, 0 ,.,.) = 
  4.9361e-02

(509, 1 ,.,.) = 
  4.3553e-02

(509, 2 ,.,.) = 
  1.0309e-02
    ... 

(509,253,.,.) = 
  7.1570e-03

(509,254,.,.) = 
  1.4031e-03

(509,255,.,.) = 
 -6.6892e-02
      ⋮  

(510, 0 ,.,.) = 
  5.3341e-02

(510, 1 ,.,.) = 
 -1.4842e-02

(510, 2 ,.,.) = 
 -4.8024e-02
    ... 

(510,253,.,.) = 
  5.4730e-03

(510,254,.,.) = 
  4.2852e-02

(510,255,.,.) = 
  1.2923e-02
      ⋮  

(511, 0 ,.,.) = 
  3.0030e-02

(511, 1 ,.,.) = 
 -9.1642e-03

(511, 2 ,.,.) = 
  9.0266e-03
    ... 

(511,253,.,.) = 
  1.0095e-02

(511,254,.,.) = 
 -1.1120e-02

(511,255,.,.) = 
 -7.9560e-03
[torch.FloatTensor of size 512x256x1x1]
), (u'layer4.0.downsample.1.running_mean', 
-0.1023
-0.1302
 0.0169
 0.0539
 0.0531
-0.0650
-0.1681
-0.0962
 0.0601
-0.0898
-0.0760
-0.0120
 0.0480
-0.0867
-0.0415
-0.0887
-0.0378
-0.2376
-0.0965
-0.0434
 0.0303
-0.2381
-0.0065
-0.0700
 0.0606
 0.0257
-0.1691
-0.1207
-0.1550
-0.0927
-0.0012
-0.0962
-0.0922
-0.1789
 0.0146
-0.0498
 0.0276
-0.1692
 0.0259
 0.0377
-0.0292
 0.0140
-0.0638
-0.0831
 0.1049
-0.0554
-0.0551
 0.1332
 0.0775
-0.1861
-0.0812
-0.2083
-0.0244
-0.0297
-0.0593
 0.1243
-0.0475
-0.0014
-0.0069
-0.1002
-0.1040
-0.0837
 0.0009
 0.0259
-0.0490
-0.0631
 0.0193
-0.0375
-0.0487
-0.0803
-0.1123
-0.1538
-0.1031
-0.0858
-0.0706
-0.0725
-0.0903
 0.0075
-0.0850
-0.0287
 0.0008
 0.0249
-0.1068
-0.1237
-0.1271
 0.0930
-0.0295
-0.0846
-0.0562
-0.1210
 0.0103
-0.1118
-0.0407
-0.0110
-0.0512
-0.1326
 0.0454
-0.1072
-0.1018
-0.1699
-0.0338
-0.0950
-0.1897
 0.0623
-0.0210
 0.0932
-0.0986
 0.0823
-0.0911
 0.0711
-0.1106
 0.0176
-0.0164
-0.2472
-0.1185
-0.0477
-0.0651
 0.1771
 0.0150
-0.0449
-0.1536
 0.0856
 0.0214
-0.0775
-0.0115
-0.0189
 0.0531
-0.0859
-0.0380
 0.0722
-0.0279
 0.0244
-0.0680
-0.0434
-0.0344
-0.1618
-0.0222
-0.0492
 0.0432
-0.1546
-0.1090
-0.1352
-0.1276
 0.0435
 0.0177
-0.0656
-0.0611
 0.2025
-0.0140
-0.1246
 0.0086
-0.0182
 0.0312
-0.1482
-0.1866
-0.0051
-0.0816
-0.1819
-0.0977
-0.0378
 0.0002
-0.0387
-0.0635
 0.1461
-0.1282
-0.0743
 0.0310
-0.1228
-0.0425
 0.0254
-0.0923
 0.0005
-0.0166
-0.1357
-0.0625
 0.0060
 0.0374
-0.0008
-0.1331
-0.0414
-0.2023
-0.0162
-0.1962
-0.0725
 0.0208
-0.0585
-0.1135
-0.1361
-0.1067
-0.1719
 0.0145
-0.0390
 0.0426
-0.1199
 0.0811
-0.0991
-0.1779
-0.0845
 0.0010
-0.0083
 0.0078
-0.0986
-0.0941
 0.0696
-0.1100
-0.1146
 0.0178
-0.1711
-0.0144
-0.0282
 0.0487
-0.0513
-0.0963
 0.0386
-0.1037
 0.0128
-0.0490
-0.0292
-0.0553
-0.1402
 0.0022
-0.0791
-0.0174
 0.0108
-0.0066
 0.0250
 0.0028
-0.0150
-0.1172
 0.0335
 0.0034
-0.1005
-0.1735
-0.1138
-0.0804
-0.0329
-0.0286
-0.2133
-0.0151
-0.0876
 0.0146
-0.0277
-0.1421
 0.0272
 0.0350
-0.1483
-0.1306
-0.0596
-0.1365
-0.1003
-0.0083
-0.0906
-0.1012
-0.1426
 0.0432
-0.0785
-0.0461
 0.0157
 0.0150
-0.1290
 0.0685
-0.1478
-0.1259
-0.0573
 0.0999
-0.0234
-0.1340
 0.0173
 0.1673
 0.0693
 0.0070
 0.0203
-0.0508
-0.1397
-0.1292
-0.0331
 0.0088
 0.1208
-0.1808
-0.0149
-0.1302
 0.0323
-0.0986
-0.0620
 0.0781
 0.0809
-0.0918
-0.0450
-0.1246
-0.0485
-0.0756
 0.0692
-0.0382
-0.0063
-0.0477
-0.0603
-0.0485
-0.0355
-0.1025
-0.0634
 0.1515
-0.1320
-0.0714
 0.0402
-0.0342
-0.0085
 0.0019
-0.0293
-0.1523
-0.0337
-0.0482
-0.0976
-0.0404
-0.0919
-0.0003
 0.0222
-0.0552
-0.0686
 0.0319
 0.1502
-0.1174
-0.1299
 0.0183
-0.0151
-0.1464
-0.0842
-0.0300
-0.0734
-0.0539
-0.1281
 0.0408
-0.0897
-0.1408
 0.0572
 0.0280
-0.0091
-0.1038
-0.0243
-0.0847
-0.0224
-0.0027
-0.1154
-0.0466
 0.0305
-0.1060
-0.0092
-0.0748
 0.0004
-0.0888
-0.1423
-0.0397
-0.1643
-0.0451
 0.0331
 0.0008
-0.1542
 0.0999
-0.0046
-0.0571
-0.0843
 0.0550
-0.1814
-0.1387
-0.0335
 0.0472
-0.0325
-0.0034
-0.0210
 0.0393
 0.0093
-0.0188
-0.0973
 0.5186
 0.0181
-0.0405
-0.0579
-0.0143
-0.0268
-0.0422
 0.0041
-0.0778
-0.0486
 0.0359
-0.1563
-0.0826
-0.1485
-0.0987
-0.0028
-0.0243
-0.0655
 0.0076
-0.1397
-0.1042
-0.0823
-0.0552
 0.0079
-0.0470
 0.0660
-0.1063
-0.0572
-0.0552
-0.0801
-0.0892
 0.0282
 0.1233
-0.2059
-0.0203
-0.0241
 0.0828
 0.0044
-0.0312
-0.1715
 0.0464
-0.0714
 0.0321
-0.0967
-0.0669
-0.0344
-0.0770
 0.0563
-0.1468
-0.0696
-0.0072
-0.0250
-0.0432
-0.0625
-0.0025
 0.0089
-0.0822
-0.1244
 0.0708
 0.0160
-0.1348
-0.0627
-0.1054
 0.1421
-0.0086
-0.0767
-0.1251
-0.0547
-0.1313
-0.0230
 0.0155
-0.0489
-0.0013
 0.0450
 0.0332
-0.0467
-0.1055
 0.0485
-0.1123
-0.0773
 0.0066
-0.0378
-0.0175
-0.0315
 0.0455
-0.1783
-0.0309
-0.0871
-0.0732
-0.0334
-0.0210
 0.0869
-0.0567
 0.0474
-0.1976
-0.0912
-0.1234
-0.0575
-0.0649
-0.0924
-0.0114
-0.0757
-0.1116
-0.0291
-0.0494
-0.0320
-0.1919
-0.0641
-0.0226
-0.1687
 0.0051
-0.1272
 0.0922
-0.0861
-0.0604
-0.1110
-0.0010
-0.0269
-0.1265
 0.0806
-0.0886
 0.0017
-0.0185
-0.0132
-0.0899
-0.1026
-0.0924
-0.0599
-0.0240
-0.0059
 0.0808
-0.0403
-0.1129
 0.0874
-0.0083
-0.1941
-0.1473
-0.0343
-0.0190
-0.0061
[torch.FloatTensor of size 512]
), (u'layer4.0.downsample.1.running_var', 
1.00000e-02 *
  1.4797
  3.7974
  2.4287
  3.3282
  0.9573
  1.2175
  3.2409
  2.3881
  2.1434
  1.2457
  0.7617
  1.4534
  2.5956
  0.8145
  1.6107
  1.6402
  3.2195
  3.4207
  2.1148
  2.1447
  1.3177
  3.4486
  3.5753
  2.3377
  1.7639
  0.4832
  2.8323
  1.9312
  2.7409
  1.7613
  2.2178
  4.2271
  1.6393
  1.5593
  1.8405
  2.1813
  1.7244
  2.2655
  3.4637
  1.7027
  1.8760
  2.6324
  2.8153
  2.7661
  2.3234
  1.0893
  1.9429
  4.7713
  1.4600
  2.0709
  1.4191
  2.7877
  1.1790
  1.8164
  2.1013
  3.3222
  2.2192
  2.3825
  2.3330
  0.9719
  2.0101
  3.5948
  1.0746
  1.9807
  1.4409
  2.5751
  2.0639
  0.8093
  2.4897
  1.6369
  2.4380
  1.5503
  1.5689
  0.4939
  2.4048
  1.2735
  2.3085
  2.6694
  2.2144
  1.9275
  2.1960
  1.9823
  1.5991
  1.2718
  1.6494
  1.1768
  1.6908
  2.4666
  2.2209
  1.7352
  1.6695
  2.0054
  2.4338
  2.7665
  1.7877
  1.7486
  3.7940
  1.5464
  2.0674
  1.2233
  3.3432
  1.5017
  1.3682
  2.8803
  2.8052
  3.1367
  1.3165
  2.6028
  1.1627
  4.7816
  1.9174
  1.1349
  1.8531
  4.4545
  1.9873
  2.8756
  0.8903
  5.2529
  3.0137
  1.7425
  1.3181
  1.3588
  0.3196
  1.6511
  1.0533
  1.7726
  1.5709
  0.8342
  2.8195
  1.3471
  2.7743
  1.2433
  1.3966
  2.0415
  3.0947
  2.9389
  0.6835
  1.7954
  1.2979
  2.2241
  1.7859
  2.9926
  1.8215
  1.1935
  2.3874
  2.4038
  2.4009
  3.7302
  0.9383
  2.6433
  1.1903
  0.8586
  2.9513
  1.8345
  1.2961
  1.6569
  2.6276
  2.5337
  1.5654
  2.1501
  2.2197
  2.3241
  1.9577
  6.7689
  2.4607
  0.4769
  2.4836
  1.6700
  1.9427
  2.3107
  1.7138
  1.8203
  1.8894
  2.4965
  2.1896
  2.5463
  3.6071
  1.5943
  1.8717
  0.6850
  4.1029
  2.3362
  1.9808
  1.2859
  3.2598
  3.0832
  2.4954
  1.2277
  1.7085
  1.5440
  2.3446
  2.9087
  5.9264
  2.4963
  1.2804
  2.0356
  2.2088
  3.2317
  4.0116
  0.9682
  1.0246
  2.2698
  3.1086
  1.7329
  2.7773
  2.2563
  1.2499
  2.8079
  2.1120
  2.3154
  1.7160
  1.1038
  1.0535
  1.8923
  1.3009
  1.4156
  2.7678
  2.4117
  2.1302
  1.4714
  3.6207
  2.8543
  1.6743
  1.8916
  2.6885
  1.0043
  1.2075
  1.4134
  3.3789
  2.0699
  1.0101
  1.8902
  1.5572
  4.9192
  1.6134
  2.8751
  0.9142
  4.2635
  2.6588
  0.4665
  0.9972
  0.5729
  4.9139
  2.4250
  1.6319
  1.4276
  1.4179
  2.4507
  1.2122
  2.0003
  2.4153
  2.7940
  2.5884
  2.0835
  1.2927
  2.4182
  3.4140
  2.1667
  0.7899
  2.9858
  1.3404
  2.1888
  0.5248
  2.4414
  3.3217
  1.7424
  1.7588
  2.2876
  2.5777
  3.6217
  1.1590
  1.5665
  1.6886
  2.4274
  3.3398
  1.6618
  1.9122
  1.7813
  1.5589
  1.7732
  1.7904
  1.9168
  1.6683
  3.3678
  0.4529
  1.5886
  1.8173
  2.2744
  0.7121
  1.2488
  2.3408
  3.1028
  2.7164
  1.5513
  1.7717
  1.6643
  2.9922
  2.2554
  1.7378
  1.4135
  4.6231
  2.3767
  1.3142
  2.4729
  2.3066
  2.3765
  0.3310
  2.0579
  1.2455
  1.6946
  2.9351
  1.9246
  2.4107
  2.7394
  1.1762
  1.1401
  1.7944
  2.3090
  2.7987
  0.4324
  1.2802
  1.0422
  2.7148
  3.0546
  1.4914
  2.2719
  0.7397
  1.6942
  1.0857
  1.4844
  1.6265
  2.8345
  1.9868
  1.5381
  1.6695
  2.1697
  0.9911
  1.8018
  1.6002
  1.0949
  0.5767
  0.5036
  2.6319
  3.0716
  0.9113
  1.0563
  1.6398
  3.0490
  1.3609
  0.6690
  1.9067
  1.7289
  2.5994
  1.5580
  2.1489
  2.6740
  2.5944
  2.3086
  3.0448
  1.7901
  1.6307
  1.8869
  0.8179
  1.2594
  2.8673
  2.7379
  1.2914
  4.2257
  4.4290
  0.4725
  1.7098
  1.0509
  3.4835
  1.0232
  1.0880
  0.9897
  2.4268
  3.1363
  2.8433
  2.3923
  1.8523
  2.2239
  2.7958
  2.1271
  1.8237
  1.6664
  2.8019
  2.1324
  2.8550
  1.7067
  1.8597
  1.5267
  1.9043
  1.0217
  2.7563
  2.8792
  2.0045
  1.8991
  1.1335
  2.2008
  2.1896
  1.9881
  1.2837
  2.2065
  4.3280
  1.8434
  1.9879
  1.2119
  1.9007
  0.9195
  2.2533
  0.9538
  2.9914
  1.1779
  1.0417
  2.5136
  2.4045
  1.4470
  2.0585
  2.0260
  1.3212
  1.7874
  1.6841
  1.8557
  0.7608
  2.6879
  1.6277
  1.3738
  0.5450
  1.2819
  3.6177
  0.8542
  3.0353
  1.1260
  3.8203
  1.9922
  1.6696
  2.0955
  1.6163
  0.9182
  1.0645
  1.6338
  2.1920
  2.2267
  1.4893
  2.3184
  1.4378
  1.3713
  1.8360
  2.0984
  2.4619
  2.3726
  2.2280
  1.8140
  2.0319
  0.3983
  1.9480
  2.7284
  2.8425
  2.3305
  2.8359
  0.6877
  1.2102
  1.1683
  3.8713
  1.6494
  2.0911
  1.9379
  1.4409
  1.5669
  0.9922
  3.0646
  1.4635
  1.4432
  4.0783
  1.7921
  1.8565
  1.4059
  2.0364
  2.4347
  2.1271
  1.6969
  1.6637
  1.1990
  3.1063
  0.5982
  2.7176
  2.5192
  2.5004
  1.0163
  2.3461
  2.9223
  1.0756
  1.7914
  0.9306
  2.5531
  1.6042
  1.2558
  1.8730
  1.3725
  3.0774
  1.1870
  3.7628
  1.7584
  1.7254
  2.6002
  1.8345
  1.8618
  1.3726
  3.4435
  1.4385
  1.1154
[torch.FloatTensor of size 512]
), (u'layer4.0.downsample.1.weight', Parameter containing:
 0.1694
 0.3368
 0.2993
 0.3745
 0.1513
 0.1781
 0.3167
 0.3947
 0.1858
 0.2068
 0.1090
 0.2042
 0.2955
 0.0765
 0.2023
 0.2487
 0.3295
 0.3349
 0.2532
 0.2739
 0.1661
 0.3432
 0.3424
 0.2969
 0.2226
 0.0993
 0.3328
 0.2349
 0.2894
 0.2296
 0.2719
 0.3945
 0.1990
 0.2564
 0.2557
 0.3541
 0.1848
 0.2513
 0.3101
 0.2782
 0.2109
 0.2441
 0.3282
 0.3248
 0.2499
 0.1873
 0.2643
 0.3949
 0.1962
 0.2587
 0.1708
 0.3381
 0.2238
 0.2498
 0.2787
 0.3783
 0.3445
 0.2681
 0.2956
 0.1146
 0.2688
 0.3479
 0.1295
 0.2843
 0.1552
 0.3026
 0.2738
 0.1891
 0.3568
 0.2302
 0.2199
 0.2070
 0.2119
 0.0971
 0.2482
 0.2264
 0.3555
 0.3113
 0.2386
 0.2654
 0.2975
 0.2666
 0.2180
 0.1451
 0.2460
 0.1734
 0.2358
 0.2891
 0.2091
 0.1971
 0.2185
 0.2008
 0.2461
 0.3726
 0.2028
 0.1993
 0.3652
 0.2258
 0.2606
 0.1900
 0.2764
 0.2011
 0.1973
 0.2958
 0.3222
 0.4117
 0.1475
 0.2674
 0.1928
 0.3615
 0.2774
 0.2143
 0.2688
 0.4286
 0.2560
 0.2777
 0.1339
 0.5103
 0.3238
 0.2417
 0.1529
 0.1843
 0.0579
 0.2288
 0.1797
 0.2803
 0.2279
 0.1579
 0.3196
 0.1842
 0.3378
 0.1688
 0.1654
 0.3049
 0.3533
 0.2948
 0.1140
 0.2503
 0.1892
 0.2647
 0.2405
 0.3880
 0.1933
 0.1918
 0.2511
 0.2901
 0.3151
 0.3252
 0.1296
 0.2491
 0.1417
 0.1295
 0.3062
 0.2836
 0.3483
 0.2306
 0.2741
 0.2700
 0.1873
 0.2431
 0.3526
 0.3546
 0.2721
 0.2708
 0.3065
 0.0832
 0.2968
 0.2286
 0.3276
 0.2695
 0.2452
 0.2444
 0.2857
 0.3365
 0.2784
 0.2933
 0.3397
 0.2231
 0.2330
 0.1486
 0.3846
 0.3104
 0.1724
 0.1724
 0.3466
 0.2978
 0.2582
 0.1879
 0.2419
 0.2249
 0.2720
 0.3735
 0.4259
 0.3754
 0.1731
 0.3698
 0.2349
 0.2694
 0.3148
 0.1658
 0.1181
 0.2994
 0.4018
 0.2126
 0.3864
 0.2955
 0.1848
 0.3686
 0.1972
 0.3265
 0.2319
 0.1676
 0.1756
 0.2367
 0.2139
 0.1974
 0.2561
 0.2619
 0.2170
 0.2284
 0.3486
 0.4500
 0.2563
 0.2559
 0.2814
 0.1797
 0.1736
 0.2013
 0.3411
 0.2245
 0.1385
 0.2284
 0.2230
 0.2566
 0.2301
 0.3639
 0.1380
 0.2381
 0.2590
 0.0830
 0.1863
 0.1267
 0.4501
 0.2741
 0.2590
 0.2782
 0.2248
 0.2718
 0.1949
 0.1815
 0.2969
 0.3168
 0.3389
 0.2790
 0.1594
 0.2752
 0.2947
 0.2909
 0.1418
 0.3336
 0.1953
 0.2646
 0.0879
 0.2553
 0.3335
 0.1943
 0.2777
 0.2386
 0.3676
 0.3042
 0.1234
 0.2615
 0.2548
 0.3224
 0.3462
 0.2090
 0.2142
 0.2054
 0.2115
 0.2153
 0.2163
 0.2509
 0.2429
 0.3326
-0.0527
 0.2244
 0.2319
 0.2674
 0.1103
 0.2320
 0.2822
 0.3234
 0.2818
 0.2093
 0.2261
 0.2900
 0.3127
 0.3456
 0.2592
 0.1677
 0.3924
 0.2694
 0.1997
 0.2973
 0.3324
 0.2270
 0.0656
 0.2964
 0.1948
 0.2383
 0.3021
 0.2510
 0.3117
 0.3185
 0.1721
 0.1867
 0.1665
 0.2851
 0.3512
-0.0486
 0.1558
 0.2213
 0.3281
 0.3861
 0.2375
 0.3057
 0.1178
 0.2681
 0.1921
 0.2211
 0.1679
 0.2877
 0.2495
 0.2451
 0.2678
 0.2393
 0.0988
 0.2778
 0.2465
 0.1747
 0.1005
 0.0502
 0.2809
 0.2810
 0.1716
 0.2114
 0.2213
 0.2817
 0.1506
 0.0769
 0.2381
 0.2411
 0.2942
 0.2543
 0.2556
 0.3451
 0.2948
 0.3040
 0.3204
 0.2757
 0.1657
 0.2941
 0.1301
 0.1854
 0.2866
 0.3198
 0.2127
 0.3608
 0.3440
 0.0954
 0.2586
 0.1709
 0.2007
 0.1967
 0.1972
 0.1942
 0.3201
 0.3484
 0.3437
 0.3153
 0.2020
 0.3251
 0.3227
 0.3038
 0.2634
 0.2364
 0.2492
 0.3080
 0.2591
 0.2391
 0.2720
 0.2601
 0.3210
 0.1818
 0.3526
 0.3579
 0.2861
 0.2526
 0.1642
 0.2897
 0.3996
 0.2651
 0.2031
 0.2502
 0.3694
 0.2085
 0.2804
 0.2233
 0.2309
 0.1609
 0.2369
 0.2116
 0.3549
 0.1635
 0.1642
 0.3072
 0.3077
 0.2152
 0.2821
 0.2857
 0.1701
 0.2305
 0.2134
 0.3189
 0.1061
 0.2628
 0.2608
 0.1749
 0.0820
 0.1815
 0.3566
 0.1204
 0.3159
 0.1595
 0.3790
 0.3272
 0.2086
 0.3096
 0.2253
 0.1456
 0.1346
 0.2304
 0.2913
 0.2727
 0.2027
 0.2688
 0.1958
 0.2277
 0.3036
 0.3250
 0.3000
 0.3328
 0.2417
 0.2665
 0.2473
 0.0913
 0.2503
 0.2543
 0.3710
 0.3321
 0.3693
 0.1099
 0.1701
 0.1758
 0.3888
 0.2206
 0.2766
 0.2813
 0.1755
 0.2616
 0.1544
 0.2519
 0.1945
 0.2452
 0.3405
 0.2446
 0.2426
 0.1822
 0.3002
 0.3037
 0.3118
 0.2414
 0.2326
 0.1303
 0.3081
 0.0979
 0.2776
 0.2918
 0.3848
 0.1789
 0.3622
 0.3005
 0.1923
 0.2672
 0.1663
 0.2998
 0.2710
 0.2040
 0.2565
 0.2289
 0.2552
 0.2121
 0.3532
 0.2293
 0.2510
 0.3085
 0.2368
 0.3000
 0.2111
 0.3456
 0.3422
 0.1576
[torch.FloatTensor of size 512]
), (u'layer4.0.downsample.1.bias', Parameter containing:
-0.1759
-0.2156
-0.2047
-0.1695
-0.1628
-0.1473
-0.2158
-0.2905
-0.1112
-0.2196
-0.1020
-0.1549
-0.1989
-0.0445
-0.1508
-0.1920
-0.2114
-0.1655
-0.1854
-0.1733
-0.1289
-0.2376
-0.1965
-0.1965
-0.1776
-0.1774
-0.1760
-0.1546
-0.1648
-0.2599
-0.1752
-0.2498
-0.1741
-0.2410
-0.2498
-0.2938
-0.1496
-0.1578
-0.1800
-0.1851
-0.1516
-0.1345
-0.2746
-0.1248
-0.2246
-0.2531
-0.2398
-0.1859
-0.1739
-0.2393
-0.1214
-0.1803
-0.2729
-0.2617
-0.1855
-0.2316
-0.2333
-0.1860
-0.2097
-0.0692
-0.1912
-0.2078
-0.1084
-0.2810
-0.1303
-0.1654
-0.2119
-0.3641
-0.2951
-0.2384
-0.1632
-0.1892
-0.1792
-0.2031
-0.1770
-0.2738
-0.3324
-0.1725
-0.1793
-0.2638
-0.2207
-0.1609
-0.1534
-0.1414
-0.2992
-0.1450
-0.1838
-0.1779
-0.1422
-0.2198
-0.1900
-0.1580
-0.1666
-0.2490
-0.1569
-0.1718
-0.1660
-0.1972
-0.2287
-0.2366
-0.2230
-0.1543
-0.2030
-0.1431
-0.1363
-0.2015
-0.1804
-0.2093
-0.2964
-0.1984
-0.2683
-0.2216
-0.2147
-0.3404
-0.2668
-0.1890
-0.1733
-0.2226
-0.1772
-0.1698
-0.1095
-0.2180
-0.1154
-0.1654
-0.1910
-0.3535
-0.3112
-0.2161
-0.1496
-0.1667
-0.2849
-0.2207
-0.1529
-0.1807
-0.2118
-0.1869
-0.1376
-0.1770
-0.1861
-0.1969
-0.1741
-0.3011
-0.0787
-0.2017
-0.1947
-0.2247
-0.2459
-0.1058
-0.1401
-0.1213
-0.1199
-0.1760
-0.2156
-0.3307
-0.3515
-0.2366
-0.1185
-0.2155
-0.1751
-0.1892
-0.3365
-0.1598
-0.2554
 0.0644
-0.2856
-0.1198
-0.1583
-0.2297
-0.3352
-0.1987
-0.2686
-0.1632
-0.2461
-0.2900
-0.2428
-0.1449
-0.1900
-0.2149
-0.1541
-0.2917
-0.2504
-0.2213
-0.0463
-0.1547
-0.1511
-0.1527
-0.1735
-0.1931
-0.1987
-0.2239
-0.2086
-0.2688
-0.1845
-0.1797
-0.1833
-0.3880
-0.1539
-0.1553
-0.1567
-0.2238
-0.1511
-0.2540
-0.2849
-0.1826
-0.2687
-0.2328
-0.2108
-0.2410
-0.1022
-0.1507
-0.1978
-0.1734
-0.2282
-0.0985
-0.1847
-0.1770
-0.1576
-0.1937
-0.1643
-0.2822
-0.1866
-0.2754
-0.2266
-0.2169
-0.1352
-0.2194
-0.1060
-0.2139
-0.1322
-0.1889
-0.2130
-0.1913
-0.2364
-0.1402
-0.2228
-0.2354
-0.1632
-0.1905
-0.1428
-0.1177
-0.2419
-0.2733
-0.2963
-0.1600
-0.3558
-0.3673
-0.2201
-0.1505
-0.2084
-0.0870
-0.2052
-0.2070
-0.1986
-0.2299
-0.0745
-0.1765
-0.1412
-0.2180
-0.1450
-0.1426
-0.1452
-0.2916
-0.0871
-0.1359
-0.2003
-0.1125
-0.2588
-0.1988
-0.2028
-0.2443
-0.0864
-0.3415
-0.2579
-0.2343
-0.3552
-0.1859
-0.1153
-0.1732
-0.1780
-0.1909
-0.2018
-0.1886
-0.2751
-0.1501
 0.1165
-0.1891
-0.1845
-0.2037
-0.0339
-0.3464
-0.1956
-0.1962
-0.1537
-0.1902
-0.1431
-0.3022
-0.1780
-0.1971
-0.2118
-0.0952
-0.1711
-0.2409
-0.2184
-0.2114
-0.2042
-0.0566
-0.0700
-0.2081
-0.1872
-0.2079
-0.1540
-0.2266
-0.1981
-0.1679
-0.2022
-0.2010
-0.1051
-0.1705
-0.2139
 0.0396
-0.1077
-0.2745
-0.2690
-0.2603
-0.2819
-0.1917
-0.1940
-0.2944
-0.1822
-0.2903
-0.1064
-0.2076
-0.2648
-0.3032
-0.2878
-0.1579
-0.0071
-0.2142
-0.2022
-0.1516
-0.1123
 0.0246
-0.0978
-0.1382
-0.1800
-0.3214
-0.2179
-0.1369
-0.0800
 0.0117
-0.1839
-0.1926
-0.1614
-0.2769
-0.1909
-0.2101
-0.2305
-0.2055
-0.2017
-0.2741
-0.1005
-0.3152
-0.1121
-0.1700
-0.1364
-0.2157
-0.2673
-0.1584
-0.1997
-0.1745
-0.1886
-0.2307
-0.2024
-0.3376
-0.2266
-0.2355
-0.2133
-0.2346
-0.2412
-0.2358
-0.1265
-0.2341
-0.1887
-0.1646
-0.1417
-0.1882
-0.1076
-0.3048
-0.1162
-0.1651
-0.2046
-0.1833
-0.3102
-0.1778
-0.1575
-0.2676
-0.1777
-0.1569
-0.1741
-0.1892
-0.3028
-0.1457
-0.2179
-0.2226
-0.1609
-0.1423
-0.2683
-0.2920
-0.1740
-0.2079
-0.1940
-0.2679
-0.1973
-0.1951
-0.1665
-0.2286
-0.1903
-0.2667
-0.4010
-0.2550
-0.1817
-0.2025
-0.1589
-0.2476
-0.0573
-0.2203
-0.2084
-0.1587
-0.1212
-0.1795
-0.3449
-0.1662
-0.2523
-0.2435
-0.2878
-0.2797
-0.1897
-0.2113
-0.1943
-0.2050
-0.1694
-0.2243
-0.2987
-0.1328
-0.1428
-0.2399
-0.1593
-0.1999
-0.3225
-0.1860
-0.1763
-0.2691
-0.2097
-0.2396
-0.1140
-0.1897
-0.1870
-0.1829
-0.2615
-0.2073
-0.1858
-0.0598
-0.1915
-0.2183
-0.2088
-0.1742
-0.2715
-0.1999
-0.2117
-0.2492
-0.1717
-0.1566
-0.1669
-0.3015
-0.1685
-0.2434
-0.2297
-0.1947
-0.2860
-0.3288
-0.2197
-0.1862
-0.1755
-0.0987
-0.1756
-0.1304
-0.1555
-0.1679
-0.2222
-0.2819
-0.2652
-0.0947
-0.2412
-0.2731
-0.2572
-0.2604
-0.2934
-0.2470
-0.1820
-0.2740
-0.1336
-0.1698
-0.1919
-0.1796
-0.2325
-0.1352
-0.1077
-0.2184
-0.1539
-0.2015
-0.3243
-0.1713
[torch.FloatTensor of size 512]
), (u'layer4.1.conv1.weight', Parameter containing:
( 0 , 0 ,.,.) = 
 -8.0284e-03 -5.7776e-03  6.4154e-03
  5.0498e-03 -6.7796e-03  1.2691e-02
  1.3331e-02  1.4523e-02  2.4522e-02

( 0 , 1 ,.,.) = 
 -1.9876e-03  1.2466e-02  1.0494e-02
 -1.9364e-02 -1.6696e-02 -1.1857e-02
 -1.1569e-02 -3.7674e-03 -3.4679e-03

( 0 , 2 ,.,.) = 
 -1.1440e-02 -1.3884e-02  1.1559e-03
 -1.7906e-02 -2.9349e-02 -1.3876e-02
 -1.4057e-02 -2.6989e-02 -2.3963e-02
    ... 

( 0 ,509,.,.) = 
 -6.3040e-03 -3.1167e-03 -1.3304e-02
  7.1623e-03  6.4669e-03  1.6063e-02
 -1.0750e-02 -1.0480e-02 -6.1070e-03

( 0 ,510,.,.) = 
  7.4484e-03  6.3878e-03 -1.2579e-02
 -7.7356e-03  1.8112e-03 -1.7890e-02
 -2.9142e-03  7.7705e-03 -9.7314e-03

( 0 ,511,.,.) = 
  2.1760e-02  2.2364e-02  2.2731e-02
  2.6681e-02  2.9127e-02  3.3356e-02
  1.2892e-02 -3.5818e-03  5.3022e-03
      ⋮  

( 1 , 0 ,.,.) = 
 -1.0597e-02 -9.1551e-03 -2.3418e-02
 -1.0768e-02 -3.3171e-03 -1.8559e-02
 -1.8607e-02 -4.2634e-03 -1.5591e-02

( 1 , 1 ,.,.) = 
 -2.6090e-02 -2.2517e-02 -3.0593e-02
 -3.9406e-02 -2.6639e-02 -2.8202e-02
 -2.6143e-02 -1.9647e-02 -2.1466e-02

( 1 , 2 ,.,.) = 
 -3.5259e-03  1.6623e-03 -6.5624e-03
 -5.0597e-03 -8.7162e-04 -5.3742e-03
 -7.9651e-03 -9.7778e-03 -1.0736e-02
    ... 

( 1 ,509,.,.) = 
  1.8492e-02 -3.6799e-03  1.0043e-02
 -5.2974e-03 -2.0757e-02 -1.5120e-02
  2.1435e-02  6.4916e-03  4.7660e-03

( 1 ,510,.,.) = 
 -1.8810e-02 -6.0469e-04 -7.6999e-03
 -1.7697e-02 -7.8692e-03 -1.6543e-02
 -1.7206e-02 -2.4746e-02 -3.0270e-02

( 1 ,511,.,.) = 
 -3.1191e-02 -1.4363e-02  2.2032e-03
 -1.2033e-02 -2.3699e-03 -1.6630e-02
 -1.2905e-02 -1.5363e-02 -3.6297e-03
      ⋮  

( 2 , 0 ,.,.) = 
 -3.2648e-02 -4.8158e-03 -2.0476e-02
 -2.5846e-02 -1.4660e-03 -2.8170e-02
 -2.6640e-02  4.3022e-03 -2.7636e-02

( 2 , 1 ,.,.) = 
 -6.3289e-03 -1.5401e-02 -1.3096e-03
 -1.7499e-02 -2.6212e-02 -2.3646e-02
 -7.3207e-03 -1.5592e-02 -8.9578e-03

( 2 , 2 ,.,.) = 
  8.9701e-04 -6.6914e-03 -5.3129e-03
 -1.1727e-03 -1.0726e-02 -9.0103e-03
  3.2311e-03 -4.5854e-03  4.3512e-03
    ... 

( 2 ,509,.,.) = 
 -2.1822e-02 -3.6889e-02 -2.2588e-02
 -1.3054e-02 -3.4191e-02 -2.7238e-02
 -1.2383e-02 -2.3452e-02 -2.2486e-02

( 2 ,510,.,.) = 
  6.8177e-03  2.1561e-02  1.3674e-02
  3.1192e-03  1.0660e-02  1.0409e-02
  8.0477e-03 -4.6817e-03 -4.3912e-03

( 2 ,511,.,.) = 
 -1.1983e-02 -1.6201e-02 -2.2626e-02
 -1.3461e-02 -7.0928e-03 -1.4384e-02
 -2.4456e-02  1.4885e-02  1.2247e-02
...     
      ⋮  

(509, 0 ,.,.) = 
 -2.6347e-02 -2.9923e-02 -3.7810e-02
 -1.5663e-02 -4.1126e-03 -1.1482e-02
 -1.3415e-02 -1.5432e-02 -1.8204e-02

(509, 1 ,.,.) = 
 -3.8392e-03 -1.1093e-02 -8.0841e-04
 -5.9634e-03 -5.9165e-03 -9.3332e-03
 -2.2761e-03  5.4781e-03 -5.6050e-03

(509, 2 ,.,.) = 
 -1.8406e-03 -2.8134e-03  8.3246e-03
 -1.2453e-03  2.1453e-04  7.4868e-03
  1.3450e-02  3.0599e-02  2.6405e-02
    ... 

(509,509,.,.) = 
  3.5268e-04  2.3897e-03  6.2558e-03
 -1.4338e-02 -2.3146e-02 -1.9024e-02
 -2.7306e-02 -3.0079e-02 -3.1762e-02

(509,510,.,.) = 
  1.4584e-02  4.3430e-03  1.2053e-02
 -6.1130e-03 -2.8539e-02 -1.8268e-02
 -1.6844e-02 -4.7816e-02 -2.6274e-02

(509,511,.,.) = 
 -1.8850e-02 -9.3396e-03  7.8905e-03
 -1.5322e-03  8.3153e-03  1.7783e-02
 -8.3318e-03 -1.5759e-02 -1.2061e-02
      ⋮  

(510, 0 ,.,.) = 
  9.9578e-03  7.4573e-03 -1.8738e-03
 -1.7752e-03 -6.8015e-04 -7.4443e-03
 -1.8319e-02 -1.4264e-02 -7.1446e-03

(510, 1 ,.,.) = 
  7.8524e-03 -2.6520e-03 -1.7556e-02
  4.5240e-03 -4.8661e-03 -1.5215e-02
 -5.0211e-03 -1.1864e-02 -1.4846e-02

(510, 2 ,.,.) = 
  2.9163e-02  1.0344e-02  2.4736e-02
  1.2012e-02 -1.0346e-02  3.5472e-03
  8.2238e-03 -1.8237e-02 -5.4892e-03
    ... 

(510,509,.,.) = 
 -8.8434e-03 -4.3184e-03 -5.7536e-03
  7.7230e-03 -4.1936e-04  7.7260e-03
  1.3536e-02  1.5705e-02  2.0893e-02

(510,510,.,.) = 
  1.6743e-03  1.9720e-03  2.1567e-02
 -8.0074e-03 -4.6606e-03  4.0560e-03
 -1.6688e-02 -1.3754e-02 -1.1708e-02

(510,511,.,.) = 
 -9.7959e-03 -9.4502e-03 -9.3443e-03
  6.9547e-03 -3.9134e-05  6.2691e-03
 -1.3193e-02  9.3272e-04  1.4579e-02
      ⋮  

(511, 0 ,.,.) = 
 -1.4963e-03  5.5133e-04  1.1571e-02
  1.0174e-02  1.7889e-03  1.1035e-02
  7.0212e-03  1.4651e-03  1.2769e-03

(511, 1 ,.,.) = 
 -1.3021e-02  6.4109e-03 -1.5199e-02
  2.4775e-02  2.1926e-02  3.3679e-02
  2.6471e-04 -3.0235e-03  1.1690e-02

(511, 2 ,.,.) = 
 -2.9665e-02 -1.5314e-02 -1.7500e-02
 -1.8339e-02 -2.0845e-02 -1.5494e-02
 -1.6086e-03  1.0831e-02 -1.4309e-02
    ... 

(511,509,.,.) = 
 -7.7044e-03 -2.1100e-02 -2.2816e-02
  5.7688e-03  1.9362e-04  7.7105e-04
 -6.1357e-03  9.7275e-03 -2.5464e-03

(511,510,.,.) = 
  1.1043e-02  2.4205e-02  3.4213e-02
  2.9181e-02  2.6904e-02  4.5372e-02
 -2.1594e-02 -1.1072e-03 -7.8312e-03

(511,511,.,.) = 
 -8.3287e-03 -7.9521e-03 -5.3358e-03
 -6.2527e-04 -5.3243e-03 -8.6296e-03
  3.6094e-03 -1.2544e-03 -4.3801e-03
[torch.FloatTensor of size 512x512x3x3]
), (u'layer4.1.bn1.running_mean', 
-0.6163
-0.7110
-0.4544
-0.6143
-0.7875
-0.5289
-0.6214
-0.5824
-0.4067
-0.5256
-0.5125
-0.5337
-0.5658
-0.6845
-0.5146
-0.6323
-0.5391
-0.6838
-0.6577
-0.4716
-0.5249
-0.4059
-0.6028
-0.5246
-0.8913
-0.6528
-0.5048
-0.5008
-0.5067
-0.5973
-0.5524
-0.6383
-0.6782
-0.7263
-0.5725
-0.6456
-0.7138
-0.6146
-0.5346
-0.5177
-0.4593
-0.6618
-0.5113
-0.5810
-0.6244
-0.5531
-0.5563
-0.5481
-0.6089
-0.4626
-0.7311
-0.6632
-0.6316
-0.7381
-0.6137
-0.6237
-0.4964
-0.4489
-0.6428
-0.5968
-0.5530
-0.3822
-0.6110
-0.4530
-0.4679
-0.5221
-0.6356
-0.4861
-0.7772
-0.5096
-0.5782
-0.7054
-0.6667
-0.6244
-0.7292
-0.7311
-0.6557
-0.6871
-0.6767
-0.5567
-0.6059
-0.6680
-0.7162
-0.6105
-0.5778
-0.6501
-0.6248
-1.0751
-0.6764
-0.7277
-0.5838
-0.5172
-0.6578
-0.6765
-0.7828
-0.5213
-0.5852
-0.6051
-0.6174
-0.6495
-0.7123
-0.6940
-0.5532
-0.6595
-0.5406
-0.7931
-0.5718
-0.5847
-0.6132
-0.6935
-0.6868
-0.6694
-0.5328
-0.6436
-0.6820
 1.0943
-0.7218
-0.5527
-0.6364
-0.7036
-0.4954
-0.7242
-0.5977
-0.4918
-0.6130
-0.5662
-0.5606
-0.5216
-0.6229
-0.6632
-0.6878
-0.5284
-0.6767
-0.6877
-0.4909
-0.5646
-0.5312
-0.5946
-0.4761
-0.4790
-0.4377
-0.5075
-0.7755
-0.6303
-0.7138
-0.6351
-0.4867
-0.6949
-0.5841
-0.5315
-0.7750
-0.4143
-0.6275
-0.7366
-0.4332
-0.5265
-0.5596
-0.7054
-0.5708
-0.6828
-0.5689
-0.6370
-0.6888
-0.6580
-0.7045
-0.5881
-0.5664
-0.7268
-0.4533
-0.5892
-0.3759
-0.5606
-0.4196
-0.6223
-0.5858
-0.6233
-0.5599
-0.6126
-0.6092
-0.5808
-0.6016
-0.6788
-0.6251
-0.5953
-0.6111
-0.5539
-0.6734
-0.7272
-0.6097
-0.5319
-0.6154
-0.6616
-0.5251
-0.7204
-0.5141
-0.5327
 0.4233
-0.5529
-0.5242
-0.6593
-0.4511
-0.6349
-0.3456
-0.6631
-0.5920
-0.5973
-0.6211
-0.7120
-0.6314
-0.5040
-0.6516
-0.6550
-0.7142
-0.5808
-0.6789
-0.6201
-0.4061
-0.5925
-0.5558
-0.5571
-0.4889
-0.5365
-0.5812
-0.4340
-0.6515
-0.7659
-0.7258
-0.6003
-0.5486
-0.5736
-0.6739
-0.7918
-0.7040
-0.7296
-0.5405
-0.7658
-0.7979
-0.4340
-0.4951
-0.6078
-0.5947
-0.4997
-0.6277
-0.7792
-0.5649
-0.5368
-0.5487
-0.4484
-0.5827
-0.6600
-0.6217
-0.4814
-0.5351
-0.7170
-0.6168
-0.5111
-0.5243
-0.5335
-0.5807
-0.5547
-0.6503
-0.4587
-0.5209
-0.6062
-0.6173
-0.5516
-0.6006
-0.6239
-0.5478
-0.4163
-0.4006
-0.6529
-0.6296
-0.6285
-0.6954
-0.6962
-0.6200
-0.6101
-0.7406
-0.5545
-0.6118
-0.4561
-0.7019
-0.4928
-0.6741
-0.5356
-0.5084
-0.5760
-0.7814
-0.6067
-0.5649
-0.7067
-0.5240
-0.5461
-0.6110
-0.4931
-0.5836
-0.5622
-0.6459
-0.6308
-0.9025
-0.7854
-0.5653
-0.7293
-0.5926
-0.5592
-0.7440
-0.7482
-0.6664
-0.7048
-0.7439
-0.5878
-0.8028
-0.6192
-0.4616
-0.5855
-0.6742
-0.7888
-0.6651
-0.3683
-0.6134
-0.4842
-0.3682
-0.6536
-0.7631
-0.6092
-0.4839
-0.6507
-0.3905
-0.6862
-0.4401
-0.6525
-0.5656
-0.6717
-0.7421
-0.7229
-0.4674
-0.5751
-0.5511
-0.5586
-0.5558
-0.4956
-0.7403
-0.6855
-0.3486
-0.6537
-0.4844
-0.6349
-0.5598
-0.5948
-0.4812
-0.5334
-0.5976
-0.6261
-0.6772
-0.7516
-0.5493
-0.3516
-0.5009
-0.6872
-0.5960
-0.7015
-0.7018
-0.6167
-0.6467
-0.6626
-0.6280
-0.5683
-0.4376
-0.5755
-0.4337
-0.7240
-0.6438
-0.7462
-0.5832
-0.4346
-0.4831
-0.7087
-0.6292
-0.5748
-0.6452
-0.6257
-0.5396
-0.6186
-0.6352
-0.8040
-0.6863
-0.5090
-0.5783
-0.4635
-0.6626
-0.6057
-0.5455
-0.6903
-0.4256
-0.6280
-0.6005
-0.6254
-0.6561
-0.6311
 0.0700
-0.5386
-0.6303
-0.6126
-0.5625
-0.7177
-0.7150
-0.4435
-0.5034
-0.4601
-0.7134
-0.6045
-0.6175
-0.1311
-0.4606
-0.5279
-0.4703
-0.6170
-0.5399
-0.6533
-0.4893
-0.6054
-0.5828
-0.4321
-0.5590
-0.6121
-0.4322
-0.5652
-0.5552
-0.5527
-0.7014
-0.8307
-0.7236
-0.5809
-0.5889
-0.3087
-0.5081
-0.6251
-0.5052
-0.5977
-0.4824
-0.5811
-0.5692
-0.5516
-0.7365
-0.5498
-0.6327
-0.5069
-0.7376
-0.6093
-0.4489
-0.4150
-0.8244
-0.6467
-0.6521
-0.7903
-0.5506
-0.5928
-0.5616
-0.5244
-0.7687
-0.4464
-0.5756
-0.6635
-0.8333
-0.5849
-0.6492
-0.6747
-0.5918
-0.7004
-0.5709
-0.6782
-0.5677
-0.5274
-0.6032
-0.7329
-0.7639
-0.7142
-0.5434
-0.5954
-0.3667
-0.8357
-0.5958
-0.5528
-0.7045
-0.7305
-0.5834
-0.6888
-0.6295
-0.4671
-0.4950
-0.3886
-0.7052
-0.7428
-0.4397
-0.6197
-0.6044
-0.7213
-0.7726
-0.5705
-0.5343
-0.6056
-0.5059
-0.7181
-0.6812
-0.6400
-0.6280
-0.6755
-0.6645
-0.6709
-0.6787
-0.7700
[torch.FloatTensor of size 512]
), (u'layer4.1.bn1.running_var', 
 0.1573
 0.1215
 0.1109
 0.1383
 0.1542
 0.1192
 0.1380
 0.1565
 0.1040
 0.1227
 0.1210
 0.1088
 0.1507
 0.1229
 0.1182
 0.1031
 0.1236
 0.1420
 0.2725
 0.1137
 0.1290
 0.1197
 0.1203
 0.1205
 0.1339
 0.1468
 0.0918
 0.1423
 0.1281
 0.1053
 0.1406
 0.1438
 0.1694
 0.1591
 0.1215
 0.1267
 0.1491
 0.1544
 0.1516
 0.1206
 0.1409
 0.1487
 0.1340
 0.1212
 0.1692
 0.1352
 0.1200
 0.1342
 0.1134
 0.1254
 0.1213
 0.1793
 0.1328
 0.1295
 0.1582
 0.1491
 0.1182
 0.1430
 0.1205
 0.1282
 0.1373
 0.1034
 0.1206
 0.0871
 0.0848
 0.1330
 0.2006
 0.1261
 0.1236
 0.1034
 0.1263
 0.1355
 0.1411
 0.1224
 0.1370
 0.1594
 0.1325
 0.1217
 0.1415
 0.1338
 0.1612
 0.1261
 0.1384
 0.1487
 0.1365
 0.1152
 0.1112
 0.2107
 0.1501
 0.1499
 0.1466
 0.1247
 0.1303
 0.1796
 0.1399
 0.1382
 0.1268
 0.1446
 0.1197
 0.1814
 0.1356
 0.1555
 0.1191
 0.1518
 0.1481
 0.1677
 0.1664
 0.1375
 0.1302
 0.1575
 0.1044
 0.1489
 0.1323
 0.1657
 0.1363
 0.1650
 0.1388
 0.1572
 0.1097
 0.1532
 0.1118
 0.1582
 0.1240
 0.1371
 0.1479
 0.1441
 0.1202
 0.1072
 0.1245
 0.1441
 0.1704
 0.1055
 0.1728
 0.1529
 0.1170
 0.1075
 0.1315
 0.1389
 0.1054
 0.1395
 0.1459
 0.1136
 0.1329
 0.1357
 0.1532
 0.1205
 0.1302
 0.1067
 0.1683
 0.1299
 0.1858
 0.1210
 0.1353
 0.1287
 0.1354
 0.1247
 0.1327
 0.1452
 0.1283
 0.1384
 0.1480
 0.1390
 0.1259
 0.1230
 0.1613
 0.1562
 0.1297
 0.1444
 0.1217
 0.1486
 0.1254
 0.1371
 0.1776
 0.1259
 0.1266
 0.1432
 0.1145
 0.1126
 0.1514
 0.1623
 0.1124
 0.1401
 0.1290
 0.1095
 0.1299
 0.1432
 0.1534
 0.1387
 0.1410
 0.0994
 0.1383
 0.1388
 0.1094
 0.1412
 0.1450
 0.1345
 0.1807
 0.1669
 0.1797
 0.1446
 0.1243
 0.1500
 0.1966
 0.1428
 0.1178
 0.1329
 0.1239
 0.1487
 0.1447
 0.1233
 0.1230
 0.1421
 0.1380
 0.1261
 0.1041
 0.1362
 0.1259
 0.1976
 0.1114
 0.1175
 0.0917
 0.1185
 0.1305
 0.1413
 0.1461
 0.1311
 0.1972
 0.1353
 0.1068
 0.1346
 0.1844
 0.1347
 0.1281
 0.1329
 0.1151
 0.1365
 0.1553
 0.1578
 0.1092
 0.1538
 0.1433
 0.1616
 0.1567
 0.1194
 0.1202
 0.1098
 0.1202
 0.1117
 0.1285
 0.1747
 0.1419
 0.1255
 0.1801
 0.1364
 0.1383
 0.1418
 0.1395
 0.1644
 0.1854
 0.1917
 0.1479
 0.1276
 0.1312
 0.1268
 0.1060
 0.1379
 0.1168
 0.1260
 0.1124
 0.1565
 0.1202
 0.2099
 0.1336
 0.1320
 0.1521
 0.1538
 0.1600
 0.1196
 0.1402
 0.1164
 0.1405
 0.1027
 0.1246
 0.1134
 0.1128
 0.1233
 0.1620
 0.1926
 0.1764
 0.1251
 0.1078
 0.1889
 0.1207
 0.1188
 0.1135
 0.1182
 0.1275
 0.1302
 0.1226
 0.1329
 0.2516
 0.1389
 0.1333
 0.1921
 0.1150
 0.1574
 0.1364
 0.1345
 0.1353
 0.1439
 0.1305
 0.1363
 0.2558
 0.1277
 0.1620
 0.1404
 0.1460
 0.1436
 0.2171
 0.1201
 0.1373
 0.1306
 0.1311
 0.1308
 0.1287
 0.1161
 0.2168
 0.1480
 0.1095
 0.1442
 0.1021
 0.1147
 0.1490
 0.1643
 0.1194
 0.1053
 0.1203
 0.1042
 0.1046
 0.1572
 0.1197
 0.1417
 0.1291
 0.1438
 0.1530
 0.1424
 0.1470
 0.1178
 0.1345
 0.1161
 0.1184
 0.1133
 0.1149
 0.1338
 0.1574
 0.1732
 0.1222
 0.1317
 0.1651
 0.1592
 0.1255
 0.1714
 0.1386
 0.1274
 0.1710
 0.1602
 0.1427
 0.1191
 0.1423
 0.1244
 0.1242
 0.1345
 0.1228
 0.1578
 0.1384
 0.1870
 0.1142
 0.1692
 0.1325
 0.1416
 0.1499
 0.1259
 0.1202
 0.1246
 0.1744
 0.1611
 0.1277
 0.1228
 0.1276
 0.1105
 0.1708
 0.1367
 0.1220
 0.1172
 0.1324
 0.1184
 0.2493
 0.1403
 0.1269
 0.1254
 0.1589
 0.1228
 0.1548
 0.1620
 0.1270
 0.1219
 0.1219
 0.1449
 0.1133
 0.1800
 0.1959
 0.1330
 0.1314
 0.1067
 0.1207
 0.1086
 0.1430
 0.1113
 0.1375
 0.1652
 0.1293
 0.1261
 0.1513
 0.1269
 0.1334
 0.1213
 0.1117
 0.1366
 0.1399
 0.1310
 0.1452
 0.1476
 0.1330
 0.1173
 0.1508
 0.1389
 0.1231
 0.1381
 0.1656
 0.1119
 0.1386
 0.1126
 0.1373
 0.1122
 0.1230
 0.0956
 0.1402
 0.1565
 0.1408
 0.1206
 0.1396
 0.1236
 0.1630
 0.1353
 0.1303
 0.2084
 0.1242
 0.1122
 0.1314
 0.1330
 0.1390
 0.1695
 0.1342
 0.1609
 0.1675
 0.1445
 0.1422
 0.1566
 0.1629
 0.1685
 0.1337
 0.1291
 0.1315
 0.1648
 0.1187
 0.1312
 0.1344
 0.1582
 0.1085
 0.1148
 0.1341
 0.1757
 0.1398
 0.1169
 0.1368
 0.1972
 0.1132
 0.1293
 0.1359
 0.1159
 0.1204
 0.1141
 0.1512
 0.1578
 0.1483
 0.1096
 0.1363
 0.1530
 0.1410
 0.1818
 0.1212
 0.1304
 0.1415
 0.1201
 0.1561
 0.1149
 0.1250
 0.1123
 0.1161
 0.1466
 0.1419
 0.1714
[torch.FloatTensor of size 512]
), (u'layer4.1.bn1.weight', Parameter containing:
 0.2587
 0.3073
 0.2595
 0.3223
 0.2662
 0.2652
 0.2575
 0.2660
 0.2766
 0.2414
 0.3045
 0.2853
 0.2821
 0.2880
 0.3094
 0.3444
 0.3155
 0.4129
 0.2110
 0.2903
 0.2496
 0.2601
 0.2967
 0.3033
 0.4152
 0.2719
 0.3661
 0.3251
 0.3898
 0.3346
 0.2753
 0.2712
 0.2414
 0.3351
 0.3394
 0.3167
 0.3360
 0.2666
 0.2109
 0.2705
 0.2587
 0.3070
 0.2720
 0.2316
 0.2885
 0.2884
 0.2955
 0.3057
 0.3043
 0.2596
 0.2673
 0.1929
 0.3136
 0.3593
 0.2622
 0.2931
 0.3295
 0.2514
 0.3208
 0.2798
 0.3259
 0.2939
 0.2390
 0.3105
 0.3471
 0.2812
 0.2148
 0.2997
 0.3061
 0.2740
 0.2791
 0.3790
 0.3592
 0.3247
 0.2995
 0.2735
 0.3356
 0.2703
 0.3255
 0.3127
 0.2783
 0.2702
 0.3900
 0.2942
 0.2899
 0.3461
 0.3432
 0.4685
 0.2634
 0.2553
 0.3019
 0.3961
 0.2742
 0.2995
 0.3858
 0.2785
 0.3212
 0.3109
 0.3642
 0.2193
 0.2643
 0.2333
 0.3151
 0.3102
 0.2936
 0.2374
 0.2419
 0.2976
 0.3335
 0.2619
 0.3984
 0.2721
 0.2718
 0.2678
 0.2757
 0.2445
 0.3508
 0.2174
 0.3309
 0.2653
 0.2564
 0.1748
 0.3177
 0.2751
 0.2067
 0.2905
 0.2762
 0.3329
 0.2738
 0.3224
 0.2199
 0.2997
 0.2206
 0.3213
 0.2760
 0.3927
 0.3174
 0.2698
 0.2988
 0.2610
 0.2550
 0.2788
 0.4445
 0.2862
 0.3606
 0.3279
 0.2869
 0.3294
 0.2244
 0.2338
 0.1754
 0.2318
 0.3186
 0.3322
 0.2255
 0.3041
 0.2837
 0.3276
 0.2392
 0.3668
 0.1971
 0.2946
 0.3613
 0.2736
 0.2554
 0.2860
 0.2511
 0.3490
 0.3253
 0.2934
 0.2027
 0.2580
 0.2200
 0.3089
 0.3074
 0.3332
 0.2943
 0.3375
 0.2330
 0.2611
 0.3383
 0.2837
 0.3546
 0.3093
 0.3791
 0.2197
 0.2648
 0.2830
 0.2587
 0.3588
 0.2830
 0.3971
 0.3194
 0.3066
 0.2754
 0.2647
 0.0970
 0.2182
 0.2334
 0.2624
 0.1829
 0.2933
 0.2747
 0.3001
 0.2996
 0.3107
 0.3256
 0.2940
 0.3901
 0.2790
 0.3030
 0.2838
 0.3010
 0.3044
 0.3479
 0.3087
 0.2611
 0.1958
 0.2941
 0.2558
 0.2889
 0.3148
 0.2516
 0.2664
 0.2862
 0.3940
 0.2933
 0.2781
 0.3796
 0.3022
 0.2583
 0.3021
 0.2784
 0.2967
 0.2994
 0.3856
 0.3277
 0.2587
 0.2539
 0.2824
 0.2634
 0.1489
 0.2205
 0.3929
 0.3401
 0.2717
 0.2789
 0.2917
 0.3177
 0.1992
 0.3684
 0.3120
 0.3201
 0.2810
 0.2302
 0.2779
 0.2865
 0.2858
 0.2713
 0.1601
 0.2496
 0.2895
 0.3154
 0.3443
 0.3285
 0.3444
 0.3251
 0.3235
 0.3375
 0.2282
 0.2128
 0.1795
 0.3077
 0.3005
 0.2775
 0.3054
 0.2914
 0.3535
 0.2871
 0.2669
 0.3961
 0.2674
 0.3898
 0.3183
 0.3242
 0.2789
 0.1911
 0.2569
 0.3427
 0.2464
 0.2778
 0.2098
 0.3019
 0.3145
 0.3271
 0.2914
 0.2619
 0.2643
 0.3039
 0.2520
 0.2099
 0.3643
 0.2915
 0.1957
 0.3286
 0.2355
 0.3210
 0.2982
 0.3388
 0.3450
 0.3716
 0.2898
 0.2846
 0.2805
 0.2219
 0.2910
 0.2681
 0.3163
 0.1964
 0.3176
 0.3092
 0.2706
 0.2505
 0.2508
 0.3166
 0.3583
 0.1563
 0.2608
 0.2892
 0.3401
 0.2891
 0.3126
 0.2172
 0.2459
 0.2651
 0.4052
 0.2986
 0.3026
 0.3773
 0.2262
 0.2675
 0.2900
 0.3759
 0.3201
 0.2567
 0.3443
 0.2348
 0.3057
 0.2347
 0.3277
 0.2938
 0.2746
 0.2805
 0.2421
 0.3590
 0.2622
 0.2773
 0.2396
 0.2134
 0.2727
 0.2984
 0.2744
 0.2591
 0.2628
 0.3568
 0.2009
 0.3220
 0.2868
 0.2561
 0.3113
 0.2138
 0.3136
 0.2745
 0.3046
 0.3042
 0.1972
 0.2815
 0.2542
 0.2983
 0.2613
 0.2668
 0.3142
 0.2930
 0.3800
 0.1966
 0.2948
 0.3363
 0.2713
 0.3625
 0.2909
 0.2695
 0.3111
 0.3242
 0.3009
 0.3231
 0.3051
 0.2012
 0.2716
 0.3692
 0.2694
 0.1481
 0.2858
 0.2819
 0.2391
 0.2867
 0.3466
 0.3431
 0.2365
 0.3357
 0.1685
 0.2925
 0.3092
 0.3127
 0.1883
 0.2561
 0.3086
 0.1732
 0.2989
 0.3235
 0.2693
 0.2630
 0.2913
 0.2786
 0.3124
 0.3098
 0.2695
 0.2403
 0.2906
 0.2784
 0.2654
 0.3485
 0.3939
 0.3033
 0.3145
 0.2622
 0.1540
 0.2790
 0.2967
 0.1954
 0.2632
 0.2957
 0.2581
 0.3231
 0.2795
 0.2859
 0.3139
 0.2488
 0.2404
 0.3714
 0.2649
 0.2267
 0.2878
 0.3462
 0.3063
 0.3180
 0.1726
 0.3153
 0.2625
 0.3020
 0.2996
 0.3632
 0.1541
 0.3192
 0.2200
 0.2894
 0.2622
 0.2534
 0.2935
 0.3208
 0.2231
 0.2743
 0.3023
 0.2829
 0.2394
 0.2506
 0.3512
 0.3366
 0.2666
 0.2930
 0.3049
 0.2321
 0.3397
 0.2727
 0.2900
 0.3146
 0.2682
 0.3094
 0.3718
 0.3387
 0.3202
 0.2423
 0.2745
 0.2966
 0.2500
 0.2329
 0.3419
 0.2928
 0.3536
 0.3739
 0.1935
 0.2670
 0.2846
 0.2583
 0.3783
 0.2826
 0.2929
 0.2728
 0.3645
 0.2770
 0.2756
 0.2523
 0.2500
[torch.FloatTensor of size 512]
), (u'layer4.1.bn1.bias', Parameter containing:
-0.1668
-0.3019
-0.2187
-0.2917
-0.1971
-0.2325
-0.1869
-0.1857
-0.2474
-0.1629
-0.2448
-0.2508
-0.1895
-0.2651
-0.3250
-0.3811
-0.2953
-0.4963
-0.0294
-0.2724
-0.2007
-0.2220
-0.2945
-0.2579
-0.5152
-0.1994
-0.5016
-0.2736
-0.4528
-0.3968
-0.2281
-0.1772
-0.1293
-0.2655
-0.3252
-0.3232
-0.3337
-0.1901
-0.0692
-0.2196
-0.2132
-0.2565
-0.1646
-0.1567
-0.2087
-0.2178
-0.2480
-0.2767
-0.3071
-0.1988
-0.1985
-0.0235
-0.2458
-0.4156
-0.1660
-0.1923
-0.3328
-0.1481
-0.3047
-0.2277
-0.3182
-0.2744
-0.1643
-0.3365
-0.4050
-0.2082
-0.0621
-0.2671
-0.2809
-0.2185
-0.2148
-0.4465
-0.3376
-0.3213
-0.2921
-0.1998
-0.3369
-0.2092
-0.2831
-0.2893
-0.1719
-0.2189
-0.4016
-0.2484
-0.2070
-0.3849
-0.3753
-0.5874
-0.1637
-0.1748
-0.2217
-0.5067
-0.2496
-0.2117
-0.4291
-0.1944
-0.3089
-0.2621
-0.4096
-0.0602
-0.2009
-0.1316
-0.3336
-0.2627
-0.2320
-0.0910
-0.1560
-0.2889
-0.3286
-0.1628
-0.5128
-0.2036
-0.1726
-0.1844
-0.2285
-0.1925
-0.3432
-0.0929
-0.3138
-0.1912
-0.1926
-0.0342
-0.3268
-0.1699
-0.0828
-0.2417
-0.2069
-0.3870
-0.2210
-0.2867
-0.0526
-0.3092
-0.0655
-0.2594
-0.2160
-0.5062
-0.2905
-0.2125
-0.3124
-0.2128
-0.1946
-0.2520
-0.5475
-0.2321
-0.3350
-0.3473
-0.2158
-0.3603
-0.0759
-0.1472
-0.0327
-0.1404
-0.3128
-0.3063
-0.1120
-0.2664
-0.2700
-0.3112
-0.1519
-0.3843
-0.0645
-0.2373
-0.4227
-0.2546
-0.1611
-0.2350
-0.1524
-0.3494
-0.3453
-0.2081
-0.0918
-0.2025
-0.1246
-0.2533
-0.2768
-0.3156
-0.2530
-0.3957
-0.0981
-0.1257
-0.3697
-0.2333
-0.3664
-0.2829
-0.4320
-0.0836
-0.1583
-0.2395
-0.1818
-0.4408
-0.2376
-0.4450
-0.3232
-0.2787
-0.1858
-0.2137
 0.0481
-0.1058
-0.1093
-0.2035
-0.0496
-0.2117
-0.1598
-0.2389
-0.2830
-0.2878
-0.3406
-0.2560
-0.4468
-0.2444
-0.2492
-0.2222
-0.2792
-0.3005
-0.4180
-0.2568
-0.1872
-0.0270
-0.2645
-0.1873
-0.3022
-0.3400
-0.1803
-0.1810
-0.2079
-0.4775
-0.2047
-0.1878
-0.4504
-0.2516
-0.1657
-0.2765
-0.2329
-0.2446
-0.2956
-0.4163
-0.2816
-0.1571
-0.2199
-0.2125
-0.1684
 0.0356
-0.0914
-0.4484
-0.3535
-0.2212
-0.2550
-0.2509
-0.2702
-0.0599
-0.3505
-0.2924
-0.2360
-0.2339
-0.1259
-0.2597
-0.2267
-0.1978
-0.1371
-0.0129
-0.1175
-0.2527
-0.3099
-0.3231
-0.3468
-0.3553
-0.3537
-0.3315
-0.3713
-0.1091
-0.0959
-0.0258
-0.2756
-0.2808
-0.2012
-0.2812
-0.1991
-0.3948
-0.2257
-0.2469
-0.4211
-0.2110
-0.4670
-0.3069
-0.3549
-0.2337
-0.0612
-0.1321
-0.2968
-0.1870
-0.2316
-0.0686
-0.3113
-0.2895
-0.3149
-0.2686
-0.2081
-0.2096
-0.3011
-0.1810
-0.0227
-0.3873
-0.2665
-0.0225
-0.2973
-0.0973
-0.2980
-0.3219
-0.2926
-0.3196
-0.4332
-0.1980
-0.2117
-0.2302
-0.0980
-0.2344
-0.2154
-0.2921
-0.0350
-0.3361
-0.2620
-0.2188
-0.1566
-0.1795
-0.2726
-0.4103
 0.0413
-0.1507
-0.2552
-0.3137
-0.2466
-0.2961
-0.0938
-0.1481
-0.2129
-0.5480
-0.2915
-0.2802
-0.5077
-0.1306
-0.1862
-0.2400
-0.4362
-0.3017
-0.1633
-0.3447
-0.1047
-0.2846
-0.1244
-0.3036
-0.2404
-0.2333
-0.2494
-0.1866
-0.3294
-0.1677
-0.2540
-0.1295
-0.0512
-0.1966
-0.2801
-0.1702
-0.1879
-0.1850
-0.3274
-0.0369
-0.2979
-0.2612
-0.1889
-0.3270
-0.1377
-0.2787
-0.2201
-0.2417
-0.2834
-0.0555
-0.2538
-0.1040
-0.2660
-0.1644
-0.1723
-0.2672
-0.2797
-0.4214
-0.0378
-0.2386
-0.3498
-0.2435
-0.4348
-0.2554
-0.1719
-0.2836
-0.3316
-0.2787
-0.2879
-0.2640
-0.0560
-0.1789
-0.4195
-0.2152
 0.0567
-0.2359
-0.2249
-0.0911
-0.2644
-0.3875
-0.3317
-0.1415
-0.3425
-0.0020
-0.1941
-0.2821
-0.2809
-0.0965
-0.1841
-0.2971
-0.0173
-0.3043
-0.3013
-0.1729
-0.1872
-0.2683
-0.2033
-0.3059
-0.2939
-0.2163
-0.1889
-0.2581
-0.2296
-0.2066
-0.3462
-0.4298
-0.2600
-0.3095
-0.1800
-0.0116
-0.2124
-0.2552
-0.0523
-0.2216
-0.2605
-0.2134
-0.2867
-0.2556
-0.2275
-0.3437
-0.1698
-0.1560
-0.4120
-0.2067
-0.1159
-0.2408
-0.3093
-0.2621
-0.2593
-0.0135
-0.3099
-0.2179
-0.2766
-0.2400
-0.3934
 0.0072
-0.2982
-0.0930
-0.2166
-0.1635
-0.1827
-0.2308
-0.2525
-0.0991
-0.2325
-0.2938
-0.2480
-0.0934
-0.1911
-0.3772
-0.3369
-0.1606
-0.2752
-0.3005
-0.1372
-0.2990
-0.2156
-0.2622
-0.3160
-0.1342
-0.2903
-0.3865
-0.2916
-0.3243
-0.2051
-0.2656
-0.2359
-0.1508
-0.1063
-0.3595
-0.2312
-0.3046
-0.4178
-0.0276
-0.2204
-0.2426
-0.1616
-0.4789
-0.1713
-0.2802
-0.2305
-0.4327
-0.2413
-0.1862
-0.1486
-0.1507
[torch.FloatTensor of size 512]
), (u'layer4.1.conv2.weight', Parameter containing:
( 0 , 0 ,.,.) = 
  2.8729e-04  4.2632e-03 -2.0266e-03
  1.9513e-04  2.4381e-03 -5.8632e-03
  4.4803e-03  8.6577e-03  8.5538e-04

( 0 , 1 ,.,.) = 
 -1.1335e-02 -1.3195e-02 -1.0305e-02
 -4.9507e-03 -4.5898e-03 -3.1041e-03
 -7.5883e-03 -8.3795e-03 -8.9239e-03

( 0 , 2 ,.,.) = 
 -1.1914e-02 -1.2104e-02 -1.0167e-02
 -1.2093e-02 -1.1557e-02 -8.9600e-03
 -1.2515e-02 -9.3296e-03 -6.4079e-03
    ... 

( 0 ,509,.,.) = 
 -9.3573e-03 -1.0662e-02 -1.2672e-02
 -8.0600e-03 -8.5423e-03 -1.2121e-02
 -8.1498e-03 -8.8037e-03 -1.0611e-02

( 0 ,510,.,.) = 
  4.2632e-03  5.6461e-03  2.8460e-03
  4.7070e-03  6.2550e-03  7.5862e-03
  1.1504e-02  1.1518e-02  1.0728e-02

( 0 ,511,.,.) = 
 -6.2455e-03 -9.1693e-03 -9.6664e-03
 -4.2935e-03 -6.5311e-03 -5.0513e-03
 -3.1141e-03 -5.0124e-03 -5.8122e-03
      ⋮  

( 1 , 0 ,.,.) = 
  2.7483e-03  3.7146e-04  3.3262e-05
 -4.5675e-03 -6.6689e-03 -6.4447e-03
 -6.7610e-03 -7.3204e-03 -9.5855e-03

( 1 , 1 ,.,.) = 
 -1.4630e-02 -1.2320e-02 -1.4457e-02
 -8.6197e-03 -5.8059e-03 -1.1075e-02
 -6.2154e-03 -6.8218e-03 -9.3805e-03

( 1 , 2 ,.,.) = 
  1.0879e-03  4.3850e-04 -1.9456e-03
 -1.2517e-03  3.2917e-04 -2.1435e-03
  4.8136e-03  2.5333e-03  5.1504e-03
    ... 

( 1 ,509,.,.) = 
  2.4644e-02  1.7434e-02  2.0734e-02
  2.3101e-02  1.3487e-02  2.0728e-02
  1.9381e-02  1.5243e-02  1.7340e-02

( 1 ,510,.,.) = 
  1.2212e-02  1.2448e-02  1.5048e-02
  5.2993e-03  4.0090e-03  9.3927e-03
  6.6766e-03  2.4941e-03  8.3288e-03

( 1 ,511,.,.) = 
  3.1040e-02  2.8243e-02  3.2319e-02
  3.8608e-02  3.3099e-02  3.8652e-02
  2.5839e-02  2.6524e-02  2.4995e-02
      ⋮  

( 2 , 0 ,.,.) = 
 -2.1761e-03  4.5553e-03  2.0612e-03
  4.9747e-03  1.1420e-02  8.5734e-03
  4.8583e-03  1.1469e-02  1.0039e-02

( 2 , 1 ,.,.) = 
 -6.2547e-05  6.5336e-04  9.4747e-04
  5.0603e-03  7.7136e-03  6.5484e-03
 -4.8432e-04  2.3057e-03  2.9219e-03

( 2 , 2 ,.,.) = 
 -3.2788e-02 -2.7615e-02 -3.2608e-02
 -3.6296e-02 -2.8170e-02 -3.0277e-02
 -3.6814e-02 -3.1547e-02 -3.0231e-02
    ... 

( 2 ,509,.,.) = 
 -5.2998e-03 -2.8590e-04 -4.9266e-03
 -7.0530e-03 -2.3684e-04 -1.5838e-03
 -6.9291e-03  4.8084e-04 -3.1548e-03

( 2 ,510,.,.) = 
  1.1854e-02  8.4836e-03  1.3839e-02
  2.8741e-03 -9.7358e-05  4.4888e-03
 -2.5515e-03 -2.7788e-03 -3.2464e-03

( 2 ,511,.,.) = 
 -1.2408e-02 -1.5001e-02 -1.3377e-02
 -1.4540e-02 -1.8537e-02 -1.7392e-02
 -6.7315e-03 -9.5205e-03 -9.0692e-03
...     
      ⋮  

(509, 0 ,.,.) = 
  3.0369e-03  1.9542e-03  1.7140e-03
 -7.6240e-03 -2.8765e-03 -5.1760e-03
 -9.3019e-03 -4.8800e-03 -4.2932e-03

(509, 1 ,.,.) = 
  4.4836e-03  2.4909e-03  1.5746e-03
  1.2065e-02  1.2936e-02  1.0344e-02
  1.9010e-02  1.7459e-02  1.5988e-02

(509, 2 ,.,.) = 
 -1.4914e-03 -8.1727e-03 -8.0671e-03
 -6.6247e-03 -6.2421e-03 -9.2717e-03
 -8.7991e-03 -7.7528e-03 -8.6336e-03
    ... 

(509,509,.,.) = 
 -1.8040e-02 -1.5366e-02 -1.5334e-02
 -1.3148e-02 -1.2180e-02 -1.0915e-02
 -1.4545e-02 -1.4756e-02 -1.1787e-02

(509,510,.,.) = 
  3.5762e-03  6.6073e-03 -1.4055e-03
  4.3975e-03  7.8375e-03  8.8085e-05
 -5.0697e-03 -5.6633e-04 -5.9284e-03

(509,511,.,.) = 
 -1.9234e-03 -8.8012e-03 -5.8821e-03
  3.6685e-03 -1.3784e-03 -3.2117e-03
 -4.7037e-04  1.5340e-04 -3.4046e-03
      ⋮  

(510, 0 ,.,.) = 
 -1.8305e-02 -1.7735e-02 -2.1683e-02
 -1.6598e-02 -1.2508e-02 -2.0530e-02
 -1.0800e-02 -9.8670e-03 -1.7195e-02

(510, 1 ,.,.) = 
  2.0721e-02  2.2466e-02  2.5049e-02
  1.8682e-02  1.3160e-02  2.3696e-02
  2.2104e-02  1.7261e-02  2.4877e-02

(510, 2 ,.,.) = 
 -5.7091e-03 -2.6876e-03 -9.2260e-04
 -9.4530e-03 -7.0543e-03 -6.2770e-03
 -4.5806e-03 -2.7182e-03 -2.5823e-03
    ... 

(510,509,.,.) = 
  2.4150e-02  1.4002e-02  1.6559e-02
  2.1363e-02  1.4359e-02  1.5854e-02
  2.5786e-02  2.7233e-02  2.5104e-02

(510,510,.,.) = 
 -4.6450e-03  1.2419e-03 -1.8768e-03
  1.3005e-03  4.0888e-03 -6.5483e-04
 -7.9783e-03 -6.6539e-03 -8.9957e-03

(510,511,.,.) = 
  1.1494e-02  2.6621e-02  1.5649e-02
  6.5960e-03  1.7290e-02  7.5466e-03
 -8.0256e-03  4.6246e-03 -5.7808e-03
      ⋮  

(511, 0 ,.,.) = 
  1.4232e-02  1.1769e-02  9.4342e-03
  6.2592e-03  5.1087e-03  2.3311e-03
 -1.9694e-03  2.7110e-03 -2.8945e-03

(511, 1 ,.,.) = 
 -7.0772e-03  1.0365e-03 -5.8451e-03
 -9.1879e-03 -3.1388e-03 -8.1517e-03
 -8.0300e-03 -5.1313e-03 -9.5734e-03

(511, 2 ,.,.) = 
  2.4314e-02  1.8942e-02  2.4256e-02
  2.0090e-02  1.1472e-02  1.5993e-02
  2.2910e-02  2.0622e-02  2.3820e-02
    ... 

(511,509,.,.) = 
 -1.6375e-02 -1.6928e-02 -1.9019e-02
 -9.7367e-03 -1.1274e-02 -1.0261e-02
 -1.2310e-02 -1.5931e-02 -1.4151e-02

(511,510,.,.) = 
  4.7098e-03 -4.5205e-04  2.8042e-03
  2.1428e-03 -4.6175e-03 -1.6818e-03
 -1.3336e-03 -5.5009e-03 -2.6237e-03

(511,511,.,.) = 
 -1.4367e-02 -1.3520e-02 -1.1387e-02
 -4.7420e-03 -1.7309e-03 -2.6426e-03
  5.1448e-03  7.0428e-03  5.0202e-03
[torch.FloatTensor of size 512x512x3x3]
), (u'layer4.1.bn2.running_mean', 
1.00000e-02 *
 -1.3953
 -5.0031
 -4.3323
 -1.5914
 -4.6112
 -2.3473
 -2.5429
 -3.3783
  5.1665
 -3.5325
 -3.7555
 -1.3353
 -3.4012
 -0.2871
 -4.3814
 -2.6424
 -3.0987
 -9.1183
  1.5193
 -3.9889
  0.3516
 -6.3124
 -2.8069
 -3.8168
 -0.5747
 -1.9639
 -2.0180
 -4.1006
 -3.7068
 -4.9702
 -2.0847
 -3.5155
 -2.2799
 -3.5089
 -2.5835
 -2.6871
 -3.3089
 -5.3280
 -2.9554
 -2.7207
 -7.9410
 -3.8662
 -7.0901
 -0.4792
 -4.0081
 -4.4518
 -0.9688
  3.9220
 -4.1579
 -3.5060
 -2.7755
 -0.7651
 -4.4367
 -2.6813
 -1.2360
 -3.5112
 -3.1672
 -2.4467
 -6.0395
 -4.6648
 -5.3290
 -2.8216
 -5.4557
 -5.4704
 -2.8591
 -5.0634
  0.0627
 -5.1950
 -5.1578
 -3.6758
 -3.0772
 -3.9569
 -1.9722
 -4.3900
 -4.4507
 -5.3416
 -4.3945
 -2.3374
 -5.1497
 -4.4268
 -3.9613
  0.7135
 -3.1644
  3.4458
 -3.8945
 -3.8628
 -2.9412
 -3.6697
 -3.3454
 -0.3520
 -2.3919
 -1.5737
 -1.8832
 -3.6160
 -3.0676
 -3.5423
 -3.6338
 -6.0085
 -2.4744
 -1.0668
 -6.4177
 -4.9577
 -5.2484
 -5.4054
 -0.5603
 -1.1281
 -5.2175
 -4.2486
 -2.8311
 -3.6422
 -0.5653
 -2.8168
 -2.9531
 -3.7204
 -6.7556
 -3.1953
 -4.5689
  4.5595
 -3.0731
 -2.3350
 -3.2033
 -1.5946
 -4.3791
  0.4781
  0.0364
 -3.1503
 -2.3126
 -3.7362
 -4.6890
 -2.7394
 -5.6134
 -4.9824
 -4.3524
 -2.7824
 -7.0928
 -6.0755
 -5.0579
 -2.8704
 -2.6274
 -3.3160
 -0.8618
 -3.9907
 -3.5256
 -8.6042
 -2.6312
 -3.2020
 -1.4972
 -1.1586
 -3.8802
 -6.7321
 -4.5730
 -1.3368
 -2.9202
 -1.5672
 -5.5057
 -4.7705
 -2.6542
 -1.3914
 -1.9433
 -3.6511
 -5.1134
 -4.3920
 -3.3364
  4.1027
 -3.2706
 -0.0820
 -1.9290
 -4.7500
 -4.4132
 -3.8169
 -2.4048
 -4.1317
 -2.0381
 -3.9825
 -4.3505
 -1.3664
 -3.0153
 -3.2162
 -5.1351
 -4.3963
 -0.1310
 -2.0620
 -4.1151
 -7.4645
 -1.3569
 -4.2029
 -3.6559
 -5.5496
 -2.4927
 -4.3322
 -2.5386
 -0.5925
  0.9121
 -4.6321
 -4.9662
 -1.3392
 -4.9198
 -2.2978
 -1.3565
 -4.4778
 -4.1518
 -5.3186
 -6.2418
 -3.3953
 -1.8224
 -4.7834
 -2.5541
 -1.6724
 -6.6561
 -5.5189
 -2.9102
  0.1744
 -2.8708
 -4.7356
 -3.9403
 -5.2492
 -4.8850
 -3.3341
 -2.7483
 -6.1212
 -4.5193
 -3.5821
  0.8330
 -1.7342
  0.1103
 -6.2373
 -2.4603
 -7.2638
  2.1412
 -7.5782
 -3.2325
 -2.4850
 -2.2635
 -0.8499
 -2.4250
  0.6696
 -1.6815
 -5.7800
 -4.0070
 -2.5381
 -2.6095
 -3.6127
 -4.1404
 -4.7404
 -0.1727
 -5.8207
 -6.2922
 -4.1185
 -2.7714
 -2.6942
 -1.9350
 -0.2645
 -4.6726
 -4.4284
 -2.1652
 -4.8506
 -4.0399
 -3.5572
 -4.6054
 -3.1532
 -3.2670
 -4.3606
 -5.3407
 -2.9613
 -6.5983
 -3.6677
 -1.5673
 -4.1916
  0.7200
 -2.6574
 -2.9427
 -4.6752
 -1.6942
 -1.7730
 -3.1830
 -2.0861
 -4.2271
 -3.7406
 -3.8363
 -4.3299
  0.7099
 -1.6024
 -1.1558
 -1.3649
 -1.9286
 -0.5381
 -3.8080
 -4.0525
 -3.7919
 -3.8805
 -7.5134
 -1.3963
  0.2917
 -1.8857
 -1.8787
 -1.8889
 -3.9999
 -4.7723
 -1.5847
 -3.8556
 -0.3824
 -4.1886
 -2.2822
 -2.7051
 -1.2578
 -1.2243
 -1.0389
 -3.0908
 -4.9441
 -5.7127
 -4.3721
 -2.9496
 -2.8846
 -3.4347
 -3.3969
 -1.8485
 -2.0259
 -0.6510
 -3.2701
 -1.2320
 -4.2393
 -4.4799
 -2.5397
 -3.7255
 -3.0126
 -3.3043
  1.1193
 -3.4983
 -3.1577
 -3.6480
 -1.0290
  2.8495
 -3.6363
 -0.4754
 -5.7458
 -1.7357
 -0.9672
 -2.6240
 -3.2853
 -0.1027
 -5.6348
 -1.9716
 -6.3584
  1.1124
 -2.9937
 -2.5287
 -3.9320
  0.2933
 -4.8010
 -3.1270
 -3.5449
 -2.9562
 -1.7369
 -5.0306
 -4.5947
 -1.7834
 -0.6932
 -0.3274
 -4.8955
 -3.5086
 -2.4075
 -2.1984
 -0.7037
 -3.7546
 -3.1797
 -2.4134
 -3.3352
 -3.2565
 -1.6909
 -2.2290
 -3.9201
 -1.0906
 -5.6042
 -4.8766
 -3.0840
 -3.4916
 -3.8825
 -4.3324
 -5.6847
  1.0243
 -4.6514
 -1.0452
 -0.2154
 -4.4856
 -3.6066
 -1.7105
 -0.5236
 -2.8570
 -5.0284
 -6.5926
 -1.6846
 -3.1785
 -6.2677
 -5.5734
 -3.5885
 -1.4798
 -4.3455
 -1.3114
 -3.5012
 -2.1125
 -7.3286
 -4.1934
 -1.7432
 -3.5229
  3.5735
 -3.0858
 -4.1892
 -3.5874
  0.1710
 -1.8882
 -3.2570
 -6.8433
 -0.2356
 -4.5632
  0.1103
 -7.9181
 -1.5563
 -2.2546
 -1.9013
 -4.7557
 -1.5476
 -4.5174
 -2.5230
 -3.1111
 -1.7632
 -1.1193
 -1.6986
 -6.3783
 -2.5520
  0.9365
 -2.4927
 -5.2760
 -6.2665
 -2.4147
 -5.4109
 -6.4714
 -1.9359
 -1.4110
 -4.5960
 -4.2290
 -2.9651
 -1.1331
 -4.9568
 -4.5198
 -4.6655
 -3.9152
 -7.2373
 -2.8233
 -3.3341
  0.0050
 -2.4896
 -0.4391
 -5.7027
 -1.6781
 -4.1684
 -4.3151
 -1.1696
 -3.2351
 -0.9796
 -1.0248
 -3.1722
 -3.1369
 -4.3368
 -4.1376
 -1.7700
 -6.5839
 -4.4930
 -3.0312
 -4.9151
 -3.4421
 -2.9603
 -2.7210
 -2.1330
 -3.6309
 -2.3335
 -4.0678
 -1.2841
 -3.0524
 -6.1549
 -4.6466
 -6.2686
 -3.6889
 -3.9056
 -3.4740
 -0.6074
 -1.9422
 -4.2960
 -3.7847
 -7.7137
 -2.9199
 -5.4336
 -2.5864
 -3.2088
 -5.0267
 -2.6562
 -1.9347
 -1.2865
 -3.7129
 -3.3561
 -5.6942
 -2.3849
 -0.7705
 -5.8456
  0.0136
 -6.6229
 -2.9168
 -0.3950
 -5.2685
 -1.9541
 -5.8807
 -4.5790
 -3.0423
[torch.FloatTensor of size 512]
), (u'layer4.1.bn2.running_var', 
1.00000e-02 *
  1.2607
  1.2795
  1.2836
  1.3783
  1.2441
  1.3147
  1.4444
  1.6157
  1.2308
  1.1641
  1.1995
  1.1215
  1.2360
  1.0052
  1.2017
  1.3942
  1.3127
  1.8412
  1.2599
  1.0842
  1.2449
  1.3412
  1.3765
  1.3621
  1.2877
  1.2920
  1.2716
  1.2023
  1.4954
  1.2628
  1.2342
  1.2743
  1.2353
  1.1137
  1.2544
  1.2324
  1.4762
  1.2765
  1.1890
  1.0633
  1.2721
  1.0859
  1.2173
  1.2396
  1.3669
  1.2910
  1.2683
  2.0786
  1.2164
  1.1582
  1.2351
  1.3041
  1.0677
  1.5028
  1.1270
  1.2414
  1.5545
  1.4291
  1.3015
  1.1886
  1.1764
  1.7043
  1.1810
  1.4155
  1.1373
  1.2751
  1.0263
  1.3853
  1.5373
  1.2052
  1.3857
  1.1107
  1.1257
  1.3424
  1.1654
  1.3275
  1.2267
  1.1632
  1.1624
  1.1821
  1.1366
  1.4051
  1.1627
  1.5670
  1.0272
  1.2229
  1.3182
  1.1980
  1.1770
  1.1470
  0.9519
  1.3395
  1.2046
  1.3805
  1.1765
  1.2712
  1.1828
  1.1465
  1.2209
  1.1313
  1.2856
  1.2779
  1.2912
  1.2170
  1.1401
  1.1912
  1.4428
  1.4182
  1.3258
  1.5467
  1.1182
  1.1008
  1.1993
  1.3008
  1.3681
  1.3370
  1.1496
  1.6639
  1.1855
  1.2463
  1.2111
  1.3034
  1.2276
  0.9981
  1.2321
  1.1815
  1.2773
  1.1727
  1.1281
  1.3318
  1.4112
  1.2649
  1.0986
  1.2151
  1.5177
  1.3746
  1.2133
  1.3573
  1.2481
  1.3561
  1.0291
  1.2488
  1.1282
  1.2459
  1.3162
  1.3991
  1.2794
  1.5236
  1.1475
  1.4152
  1.1746
  1.1560
  1.4177
  1.1815
  1.0985
  1.4292
  1.3252
  1.3664
  1.2592
  1.1000
  1.2848
  2.0357
  1.2684
  3.0875
  1.6966
  1.3806
  1.0805
  1.1598
  1.2627
  1.2273
  1.2620
  1.1659
  1.2492
  1.2681
  1.2751
  1.0844
  1.4885
  1.3681
  1.2171
  1.1670
  1.3635
  1.1769
  1.8156
  1.1138
  1.2628
  1.5029
  1.5616
  1.3909
  1.1480
  1.1303
  1.2139
  1.1750
  1.5876
  1.3656
  1.0394
  1.2946
  1.2624
  1.1957
  1.3235
  1.1265
  1.1500
  1.2635
  1.5489
  0.9593
  1.4590
  1.4663
  1.3447
  1.2776
  1.2686
  1.2837
  1.0899
  1.0744
  1.1642
  1.1800
  1.4411
  1.2817
  1.1857
  1.1787
  1.0723
  1.4497
  1.3106
  1.3415
  1.3301
  1.2676
  1.1392
  1.2345
  1.2399
  1.2312
  1.3118
  1.1824
  1.2197
  1.2423
  1.2812
  1.3887
  1.1381
  1.1887
  1.0703
  1.5483
  1.2125
  1.2822
  1.1870
  1.2034
  1.7866
  1.0217
  1.2893
  1.4659
  1.2393
  1.1389
  1.1972
  1.2732
  1.3072
  1.2994
  1.2904
  1.2871
  1.1562
  1.4855
  1.2064
  1.4229
  1.2749
  1.5885
  1.3019
  1.2125
  1.2583
  1.1958
  1.3250
  1.0867
  1.3941
  1.0751
  1.2574
  1.2344
  1.0800
  1.1533
  1.3274
  1.1349
  1.4498
  1.2250
  1.2234
  0.9903
  1.1828
  1.2083
  1.5951
  1.0767
  1.1830
  1.3225
  1.1655
  1.1856
  1.2551
  1.1889
  1.2027
  1.3007
  1.1249
  1.2834
  1.3066
  1.4390
  1.3390
  1.1616
  1.3649
  1.3628
  1.2689
  0.9673
  1.3976
  1.2583
  1.1835
  1.2000
  1.4709
  1.3959
  1.2518
  1.3496
  1.2184
  1.4348
  1.2852
  1.2958
  1.3992
  1.1663
  1.0442
  1.1392
  1.3530
  1.2199
  1.3925
  1.2103
  1.0940
  1.2331
  1.4481
  1.2432
  1.1955
  1.1361
  1.3141
  1.3357
  1.0638
  1.1367
  1.1926
  1.5863
  1.3304
  1.2212
  1.3405
  1.1748
  1.0780
  1.1570
  1.3548
  1.3191
  1.1238
  1.1355
  1.1769
  1.4076
  1.0655
  1.1557
  1.2413
  1.1456
  1.1505
  1.2523
  1.1101
  1.1558
  1.1428
  1.0822
  1.1301
  1.1807
  1.2160
  1.2464
  1.1496
  1.2547
  1.4902
  1.4602
  1.2770
  1.2263
  1.4406
  1.2328
  1.1850
  1.2651
  1.3965
  1.4678
  1.2244
  1.2105
  1.2584
  1.1940
  1.0827
  1.3151
  1.1509
  1.1410
  1.3750
  1.2897
  1.4835
  1.2276
  1.1962
  1.2476
  1.3449
  1.3318
  1.2557
  1.6294
  1.2615
  1.1391
  1.0025
  1.3623
  1.2699
  1.1068
  1.3502
  1.2616
  1.1090
  1.2450
  1.3262
  1.2724
  1.6779
  1.3447
  1.1733
  1.2772
  1.3858
  1.2996
  1.3405
  1.2329
  1.2411
  1.2495
  1.3410
  1.1526
  1.1101
  1.1719
  1.2455
  1.3591
  1.0963
  1.2343
  1.1039
  1.2518
  1.1693
  1.1699
  1.3526
  1.2257
  1.2567
  1.4976
  1.2528
  1.3554
  1.1318
  1.2526
  1.2288
  1.3581
  1.1964
  1.2445
  1.4404
  1.6388
  1.2757
  1.2317
  1.1435
  1.1726
  1.3039
  1.2119
  1.3858
  1.1201
  1.2956
  1.2951
  1.2869
  1.2629
  1.6022
  1.1351
  1.1411
  1.4286
  1.2237
  1.2991
  1.2031
  1.1916
  1.0642
  1.3661
  1.3933
  1.2715
  1.4832
  1.1984
  1.2630
  1.1473
  1.3745
  1.1393
  1.1939
  1.3160
  1.3901
  1.2581
  1.1313
  1.0755
  1.1584
  1.2514
  1.2153
  1.3047
  1.1249
  1.1903
  1.2367
  1.1338
  1.2559
  1.1869
  1.2105
  1.0223
  1.5068
  1.3862
  1.0991
  1.2486
  1.2651
  1.0860
  1.3252
  1.5014
  1.2576
  1.2565
  1.2202
  1.4279
  1.0337
  1.3899
  1.3158
  1.2282
  1.4694
  1.0891
  1.4762
  1.0859
  1.0720
  1.1243
  1.5002
  1.2772
  1.1317
  1.2571
  1.6188
  1.3516
[torch.FloatTensor of size 512]
), (u'layer4.1.bn2.weight', Parameter containing:
 1.8419
 1.8307
 1.7650
 1.8288
 1.9505
 1.8026
 1.9536
 2.2790
 1.7662
 1.8902
 1.7768
 1.7749
 1.9055
 1.7328
 1.8762
 1.8211
 1.7967
 2.3428
 1.7985
 1.7271
 1.7915
 1.9512
 1.8928
 1.9017
 1.8784
 1.9809
 1.8569
 1.7830
 1.8911
 1.8859
 1.7764
 1.9832
 1.8389
 1.7616
 1.8728
 1.8753
 1.9008
 1.8209
 1.7039
 1.7377
 1.7786
 1.6944
 1.7829
 1.7815
 1.7594
 1.8428
 1.9238
 2.0871
 1.8980
 1.8413
 1.8471
 1.8584
 1.7640
 1.8453
 1.7606
 1.9504
 1.9620
 1.8755
 1.9424
 1.8731
 1.8674
 1.9422
 1.8750
 1.9208
 1.7464
 1.8558
 1.6539
 2.0660
 2.0298
 1.9174
 1.8972
 1.7589
 1.7551
 1.9560
 1.7909
 1.7971
 1.7851
 1.7733
 1.8061
 1.7949
 1.8169
 1.8089
 1.8641
 2.1542
 1.7739
 1.7913
 1.8022
 1.7155
 1.7679
 1.7704
 1.6266
 1.8645
 1.9076
 1.8576
 1.6924
 1.8020
 1.7100
 1.7713
 1.8572
 1.7103
 2.0664
 1.9054
 1.9422
 1.8078
 1.7412
 1.6061
 1.9105
 1.8947
 1.7954
 1.8989
 1.8239
 1.7619
 1.7951
 1.8149
 1.8539
 1.8502
 1.7095
 2.1831
 1.8599
 1.8252
 1.8193
 1.8460
 1.7968
 1.6229
 1.8450
 1.8290
 1.8706
 1.9293
 1.6881
 1.9725
 1.8981
 1.8925
 1.8851
 1.8445
 1.9764
 2.0674
 1.8384
 1.8414
 1.8762
 1.7931
 1.7131
 1.9644
 1.7854
 1.9369
 1.8972
 1.8940
 1.8700
 1.7967
 1.8775
 1.9409
 1.7391
 1.7944
 1.9678
 1.7678
 1.6851
 1.9414
 1.9663
 1.9882
 1.7915
 1.8141
 1.8325
 2.1200
 1.9256
 2.3592
 2.0304
 1.9594
 1.7334
 1.9048
 1.8221
 1.7811
 1.9084
 1.8053
 1.9171
 1.9644
 1.8256
 1.6432
 1.9173
 1.9094
 1.9923
 1.7963
 1.9077
 1.7619
 2.1724
 1.7931
 1.7564
 1.8889
 1.9832
 1.9136
 1.8035
 1.8419
 1.8278
 1.8057
 1.9063
 1.8646
 1.7848
 1.8230
 1.7986
 1.7091
 1.7724
 1.7939
 1.7611
 1.9325
 2.0162
 1.7295
 2.0196
 1.8876
 1.8325
 1.8225
 1.7870
 1.9160
 1.7197
 1.7170
 1.9133
 1.7770
 1.9943
 1.8389
 1.8070
 1.8516
 1.7857
 1.9648
 1.9553
 1.9232
 1.8086
 1.8114
 1.7141
 1.8058
 1.8532
 1.9255
 1.7682
 1.8314
 1.8495
 1.8296
 1.8278
 1.8819
 1.7698
 1.7838
 1.7807
 1.9974
 1.6994
 1.9483
 1.7793
 1.8029
 2.2210
 1.6455
 1.8357
 2.1706
 1.9204
 1.7414
 1.7809
 1.8648
 1.9145
 1.8849
 1.8346
 1.9368
 1.8169
 2.2302
 1.8262
 2.0651
 1.9888
 1.8169
 1.8462
 1.9681
 1.8083
 1.8595
 1.8539
 1.7699
 1.9001
 1.7285
 1.7553
 1.8924
 1.7829
 1.9428
 1.8724
 1.7228
 2.0548
 1.7732
 1.8561
 1.7699
 1.9269
 1.8171
 2.4075
 1.7257
 1.7819
 1.7244
 1.8521
 1.8302
 1.8797
 1.7617
 1.9650
 1.9807
 1.7102
 1.7486
 1.8350
 1.9919
 1.8505
 1.9000
 1.8269
 1.9787
 1.7635
 1.6071
 1.7998
 1.9545
 1.7348
 1.7140
 1.8851
 1.7981
 1.9100
 1.8315
 1.7864
 1.9165
 1.8839
 1.9017
 1.9334
 1.7405
 1.7661
 1.8015
 1.9987
 1.7622
 1.9107
 1.8444
 1.7128
 1.8726
 1.8529
 1.9270
 1.8769
 1.7261
 1.8393
 1.9075
 1.7953
 1.8246
 1.7605
 2.0470
 1.9221
 1.9205
 1.8910
 1.7666
 1.6801
 1.8308
 1.8845
 1.8339
 1.8238
 1.7616
 1.6114
 1.8411
 1.7437
 1.8423
 1.9540
 1.7465
 1.7741
 1.8746
 1.8856
 1.7740
 1.7603
 1.7682
 1.8396
 1.6869
 1.8080
 1.8836
 1.8283
 1.8341
 1.8522
 1.9749
 1.8707
 1.7719
 1.8993
 1.8108
 1.8480
 1.8267
 1.8731
 1.9576
 1.8347
 1.9509
 1.9641
 1.7997
 1.7652
 1.9253
 1.7126
 1.7551
 1.9427
 1.8559
 1.9163
 1.7681
 1.7803
 1.8500
 1.8535
 1.8865
 1.7599
 2.0692
 1.8021
 1.7077
 1.8890
 1.9457
 1.8516
 1.7882
 1.8356
 1.8472
 1.6708
 1.7435
 1.9080
 1.9653
 2.0401
 1.8935
 1.8450
 1.7536
 1.7733
 1.8135
 1.8534
 1.9368
 1.7348
 1.8738
 1.9632
 1.9033
 1.7422
 1.7842
 1.8516
 2.0218
 1.7044
 1.8793
 1.8655
 1.8516
 1.8002
 1.8687
 1.8460
 1.7589
 1.8174
 1.9830
 1.9034
 2.1222
 1.8460
 1.9209
 1.8893
 1.9422
 1.8489
 1.8396
 1.9953
 2.0865
 1.8253
 1.7700
 1.8035
 1.7535
 1.8923
 1.8620
 1.8627
 1.7264
 1.8140
 1.9613
 1.8812
 1.8729
 2.0050
 1.7092
 1.7726
 1.9410
 1.8381
 1.8366
 1.7276
 1.8796
 1.7548
 1.9536
 1.8062
 1.8883
 2.0278
 1.8775
 1.9446
 1.8676
 1.8423
 1.7798
 1.9403
 1.8375
 2.0473
 1.9507
 1.8337
 1.8184
 1.7791
 1.8993
 1.8781
 1.8691
 1.8493
 1.7623
 1.9458
 1.7564
 1.7448
 1.8633
 1.6863
 1.8062
 1.8702
 2.0048
 1.8504
 1.8964
 1.9489
 1.8264
 1.9019
 1.8196
 1.9712
 1.8969
 1.8652
 1.8709
 1.6984
 1.8677
 1.8846
 1.9256
 1.8620
 1.6366
 1.8434
 1.7506
 1.8438
 1.5788
 1.9316
 1.9535
 1.7878
 1.7354
 2.0920
 1.9456
[torch.FloatTensor of size 512]
), (u'layer4.1.bn2.bias', Parameter containing:
 0.2371
 0.3433
 0.3279
 0.4642
 0.2233
 0.2370
 0.2176
 0.3793
 0.3140
 0.2803
 0.2434
 0.2116
 0.2478
 0.2435
 0.2298
 0.3172
 0.2725
 0.6511
 0.2925
 0.2281
 0.2279
 0.4254
 0.2342
 0.3328
 0.2632
 0.2176
 0.3180
 0.3893
 0.1387
 0.2274
 0.3379
 0.0767
 0.2253
 0.2504
 0.1990
 0.1951
 0.2566
 0.3253
 0.2797
 0.3149
 0.2373
 0.2533
 0.1956
 0.3236
 0.2093
 0.2333
 0.2300
 0.5019
 0.2830
 0.1885
 0.3264
 0.2722
 0.2369
 0.2430
 0.3625
 0.2165
 0.4700
 0.3047
 0.3675
 0.2641
 0.1979
 0.2664
 0.3448
 0.2005
 0.2450
 0.4351
 0.2689
 0.1632
 0.3087
 0.1209
 0.2153
 0.1592
 0.2960
 0.1423
 0.2951
 0.2706
 0.2007
 0.2939
 0.2210
 0.2243
 0.2465
 0.3910
 0.4599
 0.5417
 0.2147
 0.3469
 0.2703
 0.2229
 0.3645
 0.2647
 0.2421
 0.2492
 0.1666
 0.2763
 0.2560
 0.2151
 0.3363
 0.2767
 0.2516
 0.2988
 0.2622
 0.3499
 0.3001
 0.3907
 0.3184
 0.2233
 0.2649
 0.2110
 0.2034
 0.2752
 0.2314
 0.3480
 0.2238
 0.2892
 0.1991
 0.2923
 0.3259
 0.0722
 0.3039
 0.3041
 0.3803
 0.2568
 0.2382
 0.3057
 0.2652
 0.1532
 0.2110
 0.2567
 0.3148
 0.2746
 0.1833
 0.1950
 0.1116
 0.2279
 0.3705
 0.2477
 0.2000
 0.3060
 0.2548
 0.2468
 0.3028
 0.1921
 0.2952
 0.1980
 0.2135
 0.1583
 0.1586
 0.3944
 0.2352
 0.3947
 0.2740
 0.2861
 0.1856
 0.2702
 0.2986
 0.1728
 0.2658
 0.2696
 0.2028
 0.1838
 0.3176
 0.6246
 0.2631
 0.3855
 0.2074
 0.2317
 0.4171
 0.2044
 0.2926
 0.3506
 0.2305
 0.2400
 0.1420
 0.1093
 0.2757
 0.3253
 0.2334
 0.1650
 0.4026
 0.2066
 0.1790
 0.3032
 0.5658
 0.3246
 0.3834
 0.3254
 0.1772
 0.2909
 0.2350
 0.2519
 0.1968
 0.2003
 0.3213
 0.4802
 0.2543
 0.2578
 0.3280
 0.2270
 0.3044
 0.2273
 0.2447
 0.2527
 0.4136
 0.2588
 0.3589
 0.2688
 0.2115
 0.2022
 0.3186
 0.3740
 0.1785
 0.2074
 0.2346
 0.3566
 0.2623
 0.2620
 0.2880
 0.1462
 0.1896
 0.2777
 0.1852
 0.3240
 0.2748
 0.2164
 0.3066
 0.1845
 0.3992
 0.1695
 0.4411
 0.2812
 0.2730
 0.2784
 0.1861
 0.3589
 0.1934
 0.3320
 0.3350
 0.2655
 0.2740
 0.3185
 0.2633
 0.2458
 0.2003
 0.2809
 0.3049
 0.2050
 0.2904
 0.2381
 0.3278
 0.3484
 0.4293
 0.2422
 0.2859
 0.1864
 0.2954
 0.5634
 0.2081
 0.3743
 0.2902
 0.3820
 0.3069
 0.2101
 0.2750
 0.2878
 0.1870
 0.3015
 0.1661
 0.2998
 0.3101
 0.2522
 0.2419
 0.1758
 0.2681
 0.2812
 0.1495
 0.2868
 0.3157
 0.2587
 0.2437
 0.1467
 0.5416
 0.2490
 0.2831
 0.2783
 0.1614
 0.1963
 0.2034
 0.2364
 0.2527
 0.1573
 0.3184
 0.2841
 0.1613
 0.1489
 0.2850
 0.1625
 0.3277
 0.4936
 0.2780
 0.3178
 0.1743
 0.2158
 0.2222
 0.2821
 0.4267
 0.2713
 0.1778
 0.3067
 0.2270
 0.1772
 0.3897
 0.2923
 0.4843
 0.2345
 0.2327
 0.2740
 0.2700
 0.2804
 0.4035
 0.1501
 0.3329
 0.3286
 0.2803
 0.2309
 0.1738
 0.3270
 0.3097
 0.1808
 0.2384
 0.2107
 0.3240
 0.3346
 0.2236
 0.2061
 0.2687
 0.2360
 0.3338
 0.2694
 0.3203
 0.2895
 0.1884
 0.1491
 0.3957
 0.5167
 0.3407
 0.1854
 0.1816
 0.2626
 0.1855
 0.2219
 0.1482
 0.2584
 0.2458
 0.2616
 0.2396
 0.2402
 0.2423
 0.3463
 0.2731
 0.1524
 0.2514
 0.2760
 0.1734
 0.2715
 0.4052
 0.2252
 0.3676
 0.3070
 0.3127
 0.1836
 0.4330
 0.2203
 0.2073
 0.2803
 0.2984
 0.2191
 0.3272
 0.2267
 0.2749
 0.3056
 0.4566
 0.2962
 0.3528
 0.3236
 0.4220
 0.2715
 0.2256
 0.2903
 0.1829
 0.3994
 0.2820
 0.2471
 0.1647
 0.3654
 0.4504
 0.2685
 0.2992
 0.2825
 0.2435
 0.2212
 0.4300
 0.4342
 0.1988
 0.2863
 0.3398
 0.2444
 0.2905
 0.2559
 0.2586
 0.1702
 0.1906
 0.2536
 0.2978
 0.2498
 0.3777
 0.2252
 0.2472
 0.2243
 0.1732
 0.2194
 0.2091
 0.2820
 0.2898
 0.2887
 0.3292
 0.1644
 0.2962
 0.3279
 0.2535
 0.2795
 0.2238
 0.2607
 0.1937
 0.2680
 0.2418
 0.5193
 0.2502
 0.3147
 0.2166
 0.2313
 0.2027
 0.1880
 0.2180
 0.3826
 0.3871
 0.2358
 0.3556
 0.2272
 0.3272
 0.3442
 0.3154
 0.1993
 0.3135
 0.2254
 0.3048
 0.2658
 0.3337
 0.2679
 0.2670
 0.2363
 0.4347
 0.1931
 0.1995
 0.2072
 0.3202
 0.2667
 0.2305
 0.2383
 0.2246
 0.2562
 0.2837
 0.4046
 0.2786
 0.2243
 0.1591
 0.1923
 0.1894
 0.2496
 0.1140
 0.3128
 0.3197
 0.3530
 0.2999
 0.2115
 0.4718
 0.2979
 0.3472
 0.2890
 0.4740
 0.2230
 0.3630
 0.4015
 0.2446
 0.1897
 0.1460
 0.1874
 0.2734
 0.2366
 0.3001
 0.2359
 0.2688
 0.3256
 0.2749
 0.2848
 0.2299
 0.3001
 0.4818
 0.3074
 0.3164
 0.3114
 0.3549
 0.2859
[torch.FloatTensor of size 512]
), (u'fc.weight', Parameter containing:
-1.8474e-02 -7.0461e-02 -5.1772e-02  ...  -3.9030e-02  1.7351e-01 -4.0976e-02
-8.1792e-02 -9.4370e-02  1.7355e-02  ...   2.0284e-01 -2.4782e-02  3.7172e-02
-3.3164e-02 -5.6569e-02 -2.4165e-02  ...  -3.4402e-02 -2.2659e-02  1.9705e-02
                ...                   ⋱                   ...                
-1.0300e-02  3.2804e-03 -3.5863e-02  ...  -2.7923e-02 -1.1458e-02  1.2759e-02
-3.5879e-02 -3.5296e-02 -2.9602e-02  ...  -3.2961e-02 -1.1022e-02 -5.1256e-02
 2.1277e-03 -2.4839e-02 -8.2920e-02  ...   4.1731e-02 -5.0030e-02  6.6327e-02
[torch.FloatTensor of size 1000x512]
), (u'fc.bias', Parameter containing:
1.00000e-02 *
 -0.2634
  0.3000
  0.0656
    ⋮   
 -1.7868
 -0.0782
 -0.6345
[torch.FloatTensor of size 1000]
)])
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-125-430ef2cc5165> in <module>()
      3 del loaded[u'conv1.weight']
      4 print loaded
----> 5 mynet.load_state_dict(loaded)
      6 
      7 print "after..............."

/Users/albertxavier/anaconda/lib/python2.7/site-packages/torch/nn/modules/module.pyc in load_state_dict(self, state_dict)
    309             if name not in own_state:
    310                 raise KeyError('unexpected key "{}" in state_dict'
--> 311                                .format(name))
    312             if isinstance(param, Parameter):
    313                 # backwards compatibility for serialized parameters

KeyError: 'unexpected key "layer3.0.conv1.weight" in state_dict'

In [ ]:
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
           'resnet152']


model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model


def resnet34(pretrained=False, **kwargs):
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
    return model


def resnet50(pretrained=False, **kwargs):
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


def resnet101(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
    return model


def resnet152(pretrained=False, **kwargs):
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
    return model

In [73]:
from graphviz import Digraph
from torch.autograd import Variable

def save(fname, creator):
    dot = Digraph(comment='LRP',
                node_attr={'style': 'filled', 'shape': 'box'})
    #, 'fillcolor': 'lightblue'})

    seen = set()

    def add_nodes(var):
        if var not in seen:
            if isinstance(var, Variable):
                dot.node(str(id(var)), str(var.size()), fillcolor='lightblue')
            else:
                dot.node(str(id(var)), type(var).__name__)
            seen.add(var)
            if hasattr(var, 'previous_functions'):
                for u in var.previous_functions:
                    dot.edge(str(id(u[0])), str(id(var)))
                    add_nodes(u[0])

    add_nodes(creator)
    dot.save(fname)
# dot.save(fname)
# print mymodel.creator
x = Variable(torch.rand(2,3,224,224))
out = mymodel(x)
save("./mynet.dot", out.creator)


---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-73-7b6e84e2b446> in <module>()
     26 # print mymodel.creator
     27 x = Variable(torch.rand(2,3,224,224))
---> 28 out = mymodel(x)
     29 save("./mynet.dot", out.creator)

/Users/albertxavier/anaconda/lib/python2.7/site-packages/torch/nn/modules/module.pyc in __call__(self, *input, **kwargs)
    200 
    201     def __call__(self, *input, **kwargs):
--> 202         result = self.forward(*input, **kwargs)
    203         for hook in self._forward_hooks.values():
    204             hook_result = hook(self, input, result)

<ipython-input-72-792fd9e0b5c0> in forward(self, x)
      8         x = self.pretrained_model(x)
      9         node = self.pretrained_model.layer1[0].relu
---> 10         y = self.fc(node)
     11         return y
     12 # x = model.layer1[0].relu

/Users/albertxavier/anaconda/lib/python2.7/site-packages/torch/nn/modules/module.pyc in __call__(self, *input, **kwargs)
    200 
    201     def __call__(self, *input, **kwargs):
--> 202         result = self.forward(*input, **kwargs)
    203         for hook in self._forward_hooks.values():
    204             hook_result = hook(self, input, result)

/Users/albertxavier/anaconda/lib/python2.7/site-packages/torch/nn/modules/linear.pyc in forward(self, input)
     52             return self._backend.Linear()(input, self.weight)
     53         else:
---> 54             return self._backend.Linear()(input, self.weight, self.bias)
     55 
     56     def __repr__(self):

RuntimeError: expected a Variable argument, but got ReLU

In [ ]: